
FPL

Daniel Stenberg

FPL ii

Copyright © 1993-1995 by FrexxWare

FPL iii

COLLABORATORS

TITLE :

FPL

ACTION NAME DATE SIGNATURE

WRITTEN BY Daniel Stenberg February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FPL iv

Contents

1 FPL 1

1.1 FPL Users Documentation . 1

1.2 About this manual . 2

1.3 How to reach me . 2

1.4 General . 3

1.5 Funclibs . 5

1.6 Line Control . 5

1.7 Pragmas in FPL . 6

1.8 Variables . 7

1.9 Strings . 11

1.10 Functions . 12

1.11 Declare inside functions . 13

1.12 General function use . 15

1.13 Constants . 16

1.14 Blockstatement . 17

1.15 Statements . 18

1.16 Null statement . 18

1.17 Expression statement . 19

1.18 Keywords . 19

1.19 Hints and tricks . 21

1.20 Numeric expressions (and operators) . 22

1.21 Grouping and evaluating . 23

1.22 Primary expressions . 25

1.23 Parenthesized Expressions . 25

1.24 Function calls . 25

1.25 Unary Expression . 26

1.26 Increment ++ . 26

1.27 Decrement -- . 27

1.28 Unary plus + . 27

1.29 Unary minus - . 27

FPL v

1.30 Logical negation ! . 27

1.31 Bitwise negation ~ . 28

1.32 Binary expressions . 28

1.33 Multiplication * . 29

1.34 Division / . 29

1.35 Remainder % . 29

1.36 Addition + . 30

1.37 Subtraction - . 30

1.38 Bitwise left and right shift << >> . 30

1.39 Relational < > <= >= . 31

1.40 Equality == != . 31

1.41 Bitwise AND & . 32

1.42 Bitwise Exclusive OR ˆ . 32

1.43 Bitwise inclusive OR | . 32

1.44 Logical AND && . 33

1.45 Logical OR || . 33

1.46 Conditional expressions . 34

1.47 Assignment expressions . 35

1.48 Simple assignment = . 35

1.49 Compound assignment . 35

1.50 Comma expressions . 36

1.51 Keywords . 37

1.52 break . 39

1.53 case . 40

1.54 char . 40

1.55 continue . 41

1.56 default . 42

1.57 do . 42

1.58 else . 43

1.59 exit . 44

1.60 export . 44

1.61 for . 45

1.62 if . 46

1.63 int . 48

1.64 resize . 48

1.65 return . 49

1.66 short . 50

1.67 string . 50

1.68 typedef . 52

FPL vi

1.69 switch . 52

1.70 while . 54

1.71 Functions . 55

1.72 abs . 56

1.73 atoi . 56

1.74 closelib . 57

1.75 debug . 58

1.76 eval . 58

1.77 exists() . 58

1.78 interpret . 59

1.79 itoa . 60

1.80 itoc . 61

1.81 joinstr . 61

1.82 ltostr . 62

1.83 openlib . 62

1.84 rename . 63

1.85 sscanf . 64

1.86 sprintf . 67

1.87 strcmp . 71

1.88 strlen . 72

1.89 strncmp . 72

1.90 strstr . 73

1.91 strtol . 73

1.92 substr . 74

1.93 Examples . 75

1.94 Error messages . 77

1.95 Index . 81

FPL 1 / 92

Chapter 1

FPL

1.1 FPL Users Documentation

FPL is Copyright © 1992-1995 by FrexxWare. Permission is granted ←↩
to freely

distribute this program for non-commercial purposes only. FPL is distributed
"as is" without warranty of any kind.

This documents the FPL language as it runs from version 13. If you happen to
use any lower version, upgrade!

FPL is very similar to C. If you know C, then FPL is very fast to learn!

Parts of the language:

General

Expressions

Functions

Keywords

Line control

Statements

Strings

Variables

Pragmas
(New from version 8)

Funclibs
[Amiga only]

FPL 2 / 92

Subsequent information:

About this manual

Error messages

Examples

Hints and tricks

How to reach us
--- ←↩

For more information about the FPL distribution: General information

And for programmers that want to implement FPL library support:
FPL implementation

1.2 About this manual

This is the FPL LANGUAGE documentation. This deals with about everything that
can be said about FPL from the user’s view. For information about how to
implement fpl.library in your own code, see the FPLlib.guide and fpl.doc
files.

Many examples provided are from the FrexxEd environment, meaning that several
of the used functions in the examples are FrexxEd specific and not a part of
FPL. (FrexxEd is Copyright © 1992-1995 by FrexxWare.)

There should be sufficient information in this manual to allow every user to
fully understand and use FPL. If it should prove unsufficent, report it!

TECH Notes exist in some parts of the manual, explaining why I solved things
the way I did and sometimes also how.

This documentation is written during a long time and during a lot of FPL
updates. There might still be some old version thinking in this manual, but I
hope it won’t destroy your ability to create something good with FPL.

This manual does only handle the language FPL. When FPL is used in real life,
it will always be used in a software which is host to FPL. That software will
affect FPL a lot and you should read the FPL chapters of that software’s
documentation closely!

1.3 How to reach me

For private matters/discussions/questions/ideas, drop me a email/netmail at
our own BBS: The Holy Grail (+46-(0)8-6121258, FidoNet 2:201/328, running
28800 bps V34), or reach me at email: Daniel.Stenberg@sth.frontec.se!

FPL 3 / 92

Problems concerning FPL, the library, bug reports, other FrexxWare products
or stuff like that, are dedicated to public message areas making it possible
for everyone to share, learn and participate.

If you have any ideas about things you’d like FPL to support, handle or run,
don’t hesitate to contact me and share your visions. FPL is continuously
developing and I need feedback to know in which directions you want it to go.

Swedish users of FPL can take advantage of the FidoNet echo mail area named
R20_FPL. Available on backbone.

If there is enough interest shown, I will consider arranging a standard
internet mailing list for FPL discussions.

All forthcoming updates and releases will be uploaded as fast as possible to
the public ftp site known as AmiNet. (Thanks to Mattias Axelsson for his
offering to do this on a regular basis!)

Source code is very much available and if you didn’t get it in the package,
get in touch!

Snail mail address:

Daniel Stenberg
Ankdammsgatan 36, 4tr
S-17143 SOLNA
Sweden

1.4 General

* Every execution begins at the top of the program and interprets ←↩
from

left to right, downwards.

* All statements must be separated with a semicolon (;).

* FPL is case sensitive. That makes the following two variable names
different:

hello Hello

* There is no maximum length of a script line. In fact, the entire
program is indeed as good in one single line as in several lines.

* There is no line orientation in the language at all. Programs can be
written in almost any way provided that you follow the syntax rules
of the

keywords
and
functions

. Whitespaces, comments and new lines
can be inserted anywhere to make the code more appealing to you.

* Comments are allowed everywhere and are written exactly as in C and
Arexx as well as in C++; starting with a "/*" and ending with a "*/"

FPL 4 / 92

with no nesting possibilities(1):

/* This is a comment */

or starting with a "//" symbol and ending with a new line. Ex:

// This is also a comment

(Kjell, I hope you’re really happy with this feature!)

(1) - Since version 7, FPL can be made to accept nested comments.

* Continuation of string lines is written with a backslash (\)
character followed by a newline. Ordinary statements don’t need
any continuation character at all. Just as in C... ;-) Ex:

a=b /* This is a fully working statement */
>
c;

b="hello\
world"; /* Continues a string assign.*/

output /* Split the name and the arguments... */
("hi");

/* The code below works just fine, but writing much of this */
/* kind might make your code rather confusing! */
output(\
"h\
ello\
wor\

ld"\
);

(In ’C’ you can continue *EVERYTHING* by simply writing a backslash
and continue on the next line (thanks to the preprocessor that merges
such lines into one for the compiler). FPL cannot perform the same
if you’re not using FPL together with a preprocessor that replaces
such sequences (such as FPP, the FrexxWare Pre Processor).)

* All identifier names (labels/functions/variables) is limited to no
more than 64 significant characters. More characters can be used, but
identifiers with the same 64 first characters are considered
identical.

* Identifiers can consist of both letters, numbers and underscores
("_") but must not begin with a number. Letters are the 26 characters
from a to z and the 26 characters from A to Z.

* There is no kind of unconditional jump or goto in FPL. In languages
like this (with different local levels), goto is most frequently
used in the wrong way and the use of it should anyhow have been very
limited (just look at the goto function in C). FPL doesn’t need any
goto/jump keyword.

FPL 5 / 92

* Do not, I repeat, do not rely on undocumented features in the
language. FPL is constantly being changed and new error checks might
be implemented in the next release. The strange feature you may find
working in this version, might be a sever error in the next.
Code as stated in the manual and your FPL code will have a much
bigger change to stay accurate even when the version number ascends.

1.5 Funclibs

Overview
~~~~~~~~

To enable third party programs to add functions to already running FPL
sessions, the ’funclib’ concept was invented. The inspiration source when
designing the interface was to make it work like when using shared libraries
(known as dynamic linking in some systems).

Using this technique, all FPL programmers can take advantage of functions
that is placed in funclibs. By simply opening the funclib all its functions
will exist and can get called. Any FPL program can open any funclib.

Funclibs could contain functions for bringing up requesters easier, for
compression procedures, for serial port communication or for file handling.
The limits are set by the funclib programmer, not by anyone else!

How to?
~~~~~~~

By opening the desired funclib with the
openlib
function, all function will

be there. There’s nothing more to it than that!
After you’ve called the functions you wanted the funclib for, you simply

call
closelib
which concludes access to that funclib.

In some occasions, the host program might have already opened a funclib for
you, and then you won’t need to open it and you shouldn’t close it.

1.6 Line Control

I encourage the use of preprocessors together with FPL. FPL interprets the
ANSI C standard "#line" instruction as a line number/file name changer.

#line
=====

A line control directive that supplies line numbers for FPL messages. It
causes the next source line to be treated as having the specified number.

Syntax

line { decimal_constant ["file_name"] }

FPL 6 / 92

In order for FPL to produce meaningful references to line numbers in
preprocessed source, the preprocessor inserts #line directives where necessary
(for example, at the beginning at after the end of included text).

A file name specification enclosed in double quotation marks can follow the
line number. If a file name is specified, FPL views the next line as part of
the specified file. If a file name is not specified, FPL views the next line
as part of the current source file.

Note that the keyword ’line’ is optional. The directive

line 300

is equivalent to

300

Example:

On Amiga, an FPL source could be preprocessed using SAS/C 6.x by entering the
following line:

"sc PPONLY KEEPLINES <FPL program>"

(note that if ’KEEPLINES’ isn’t specified, SAS/C won’t output any #line
instructions!)

1.7 Pragmas in FPL

Pragmas are specified by entering

#pragma <keyword>

first in a line, and where the <keyword> is a compiler specific instruction.
FPL supports the following pragmas:

(NOTE: do only use the pragmas if you are very certain of what they are doing,
they alter settings done by the FPL implementor.)

Keyword

cache Make FPL keep this file in memory after execution for faster

access (it may very well do it anyway, depending on the FPL
setup).

nocache Opposite to ’cache’. Make FPL to *not* keep this file in
memory after usage, even if symbols were exported. The file
will be loaded into memory each time it is to be used, and is
flushed from memory when not in use.

reread When executing cached files, the original file might be
changed. This pragma will force this file to be reread if
it is changed on disk while another version is cached and
then executed.

FPL 7 / 92

noreread The opposite to ’reread’. Force FPL to ignore if the file has
been changed on disk or not.

1.8 Variables

* There exist a few kind of variables in FPL:

integer - holds a 32-bit signed numerical value.
(maximum: 2147483647, minimum: -2147483648)
Declarator: ‘int’ or ‘long’

short - holds a 16-bit signed numerical value.
(maximum: 32767, minimum: -32768)
Declarator: ‘short’

char - holds an 8-bit signed numerical value.
(maximum: 127, minimum: -128)
Declarator: ‘char’

string - holds a contiguous sequence of characters.
No length limit.
Declarator: ‘string’.

Declare a varaible by using the declarator followed by the symbol name and
an optional initial assign. Multiple declarations can be done by comma
separating them.
Example:

int a;
string b;
int a=2;
string foobar="ninja", foo, bar;

Variables not assigned when declared, equals zero or zero length strings.

* FPL includes NO floating point variables at all. The secret of still
making proper calculations is the

remainder operator
.

(Floating point numbers/expressions is expected to appear in a future FPL
version.)

* Variables can be declared to exist in a few different ways:

‘static’ - makes the variable to be remembered until the next time
this

function is invoked.
‘const’ - constant variable. After the initialization assign, this

cannot be changed.
‘auto’ and
‘register’ - make a varible declared as a global to exist as a non-

global.
‘volatile’ - volatile variables exist in C. They are written back to

memory each time they are changed. FPL variables are always

FPL 8 / 92

written back when changed. Implemented to make C ports
easier.

‘unsigned’ and
‘signed’ - not currently implemented. These words are simply read and

ignored.

These keywords can be used together with a declarator keyword in any
combination. Examples:

static int foobar;
int auto register foobar;
string static foobar;

* Create declarator aliases by using the keyword ‘typedef’. Usage:
"typedef <declarator> <symbol>;". After such a typedef, the alternative
declarator can be used whereever the original declarator can be used.

* Scope of FPL Identifiers

The region where an identifier is visible in a program is referred to
as the scope of the identifier.

The scope of an identifier is determined by where the identifier is
declared.

Block scope

The identifier’s declaration is located inside a statement
block. An identifier with block scope is visible from the point where
it is declared to the closing brace (}) that ends the block.

You can nest block visibility. A block nested inside a block can
contain declarations that redeclare identifiers declared in the outer
block. The new declaration of the identifier applies to the inner
block. The original declaration is restored when program control
returns to the outer block. An identifier from the outer block is
visible inside inner blocks that do not redefine the variable.

File scope

The identifier’s declaration appears outside of any block, before the
start of the program.
An identifier with file scope is visible from the point where it is
declared to the end of the source file.

Example:

void cool(int);
void stupid(int);

int a=-50;
int b=1000;
cool(a):
exit;

void cool(int a)
{

FPL 9 / 92

stupid(a);
}

void stupid(int a)
{

{
int b=0;

}
output(b/a);

}

* All FPL variables must be declared before use and they must be
declared first in the block. (Blocks are always started with an
an open brace and ended with return() or a close brace.)
(NOTE: The technique is like the one used in common C)
Ex:

int a;
for(a=0; a<10; a++) {

int b=0;
output(b);

}

is correct, but NOT this:

char a;
output(a);
short b=5; /* the line above broke the chain of declarations */

* Variables declared within loop braces will be declared and
assigned every loop, this is anyhow not good for execution speed! Ex:

int a;
for(a=0; a<6; a++) {

int b=a*2;
output(b, ", ");

}

This example will output() "0, 2, 4, 6, 8, 10 " !

* Multi dimensional variable arrays are supported. To create e.g twenty
integers:

int hello[20];

(These will be accessible by the names hello[n], where n is a number
from 0 to 19.)

or

int hello[4][5];

(These will be accessible by the names hello[n][m], where n is a number
from 0 to 3, and m is a number from 0 to 4.)

* Assign arrays using the {} operators. This example assigns var[3] to
100 and var[4] to 200:

FPL 10 / 92

var[3]={100, 200};

When declaring variables, the array assign always begins with the
first member of the array, this line assigns the four members a[0] to
a[3]:

string a[4]={"hi", "how", "are", "you?"};

The value of an array assign expression is always the last member of
the assign list. The following example will output the word "world"
on the screen:

output(a[0]={"hello", "world"});

Compound assigns on arrays are also valid! The following line adds 2,
3 and 4 to the variables length[3], length[4] and length[5]:

length[3]+={2, 3, 4};

The value of this expression will be the last addition (length[5]+4).

The string append operator is also array friendly. The following
example add strings to the strings names[1] and names[2].(The
returning string will be names[2]+=" (stupid)".):

names[1]+={" (ill)", " (stupid)"};

Of course, this works with array using more than one dimension too:

int foo[2][3]={
{0, 1, 2},
{2, 3, 4}

};

On the fly, things like this can (of course) be used:

foo[1]^={{2}, {3, 4}};

* Attempts to create a variable with a name that is already being used
by another variable in the same local level will result in an error.

* FPL supports variable referencing, more familiar to C programmers as
pointers to variables. Currently, though, you cannot declare or assign
them in any other way than through the parameters of a function call:

int foobar(int *barfoo) /* this function receives an integer reference */
{

barfoo = 5; / assign the variable ’barfoo’ is referencing! */
barfoo = 5; /* ILLEGAL /

}
int ninja;
foobar(&ninja); /* make foobar() assign the ’ninja’ variable!

The same procedure is indeed possible to perform when referencing strings.

FPL 11 / 92

1.9 Strings

* Strings are always written enclosed within quotation marks (").

* To read the ASCII value of a single character within a string, use
square brackets in the form: name[index] where name is the name of
the string variable (could of course also be an array member) and
index is the column you want to check out. Index below zero or above
the length of the source string will result in error. The following
example outputs all ASCII codes in a string:

string str = "hello world";
int ascii, n;
while (ascii = str[n++]) {

output (ascii "n");
}

This example will output all ASCII values in column 2 in the strings
in the array:

string str[3] = {"hello", "world", "string"};
int n;
for (n = 0; n < 3; n++) {

output (str[n][2] "n")
}

Reading beyond the end of a string simply returns a zero, while
reading a negative column will result in an error.

* Strings not enclosed within quotes are assumed to be variable names.

Note the difference between:

output("Hello");

and

output(Hello);

(Example 1 outputs the actual string "Hello", while example 2 outputs
the contents of the variable *named* "Hello".)

* Append strings to a string variable by using the ’+=’ operator. Ex:

string a="Hello ";
a+="world";
output(a);

Outputs the string "Hello world" on the screen.

string a = "Hello ";
string b ="world";
output(a + b);

* Special characters within strings should be symbolized with backslash
and a character just as in the good old C standard:

FPL 12 / 92

a - Alert (bell)
b - Backspace
f - Form feed (new page)
n - New-line
r - Carriage return
t - Horizontal tab
v - Vertical tab
’ - Single quotation mark
" - Double quotation mark
? - Question mark
\ - Backslash
xhh - hex number, where "hh" is a two digit hexadecimal value.
nnn - octal number, where "nnn" is a three digit octal value.

See also the
function reference
for string handling functions such as

~
strcmp()
,
strncmp()
,
substr()
,~
eval()
and more.

1.10 Functions

If you are not aquinted to the use/calling of functions from FPL, ←↩
read the

general function usage
paragraph.

In a standard FPL environment there is a lot of functions that the FPL
programs can use. They are added to FPL in three different ways:

* The host program of FPL adds a lot of functions so that the programs really
can do anything fun with the software. Such functions are called "external"
functions and they can’t be described in this document but will be found in
the host programs documentation.

*
Inside functions
that are declared and defined in an

FPL program. Any FPL program can create a function that can be called from
another function and that is treated and looks just like all the other
functions.

* The
Internal functions
are supplied by FPL itself. Such functions

will always be there, no matter what the name or the purpose of the host

FPL 13 / 92

program is.

1.11 Declare inside functions

This chapter handles FPL function declarations and definitions. A ←↩
function

declararation declares the format and existence of a function prior to its
use. A function definition defines a function.

A function in FPL must always be declared (prototyped) or defined before it
is used. Otherwise it doesn’t know where to find the function and how to
interpret its parameters.

Function Declaration (prototyping)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A function declaration establishes the name of the function, the type of
result that the function returns and the types of the arguments expected by
the function when you call it.

If the function does not return a value, declare it as a function returning
void.

If the function is to be accessed from other program than this, it should be
declared ‘export <the rest>’.

Example:

int func (int, string);

Function Definition
~~~~~~~~~~~~~~~~~~~

A function definition specifies the name, formal parameters, and body of a
function. You must also specify the function’s return type.

A function definition contains the following:

* A type specifier, which determines the type of value that
the function returns. A function returning no value should be declared
to return ‘void’. A function can have any type specifier.

* A function identifier, which provides the function with a name.

* A list of parameters that the function expects and their types.

* A block statement, which contains data definitions and code.

A function can be called by itself or by any function that appears in the
same file as the function definition. If a function has been declared
‘export’ed, the function also can be called by functions that appear in other
files, otherwise it can only be directly invoked from within the same source
file.

The function definition or a declaration for the function must appear before,
and in the same file as, a call to the function. All declarations for a given
function must be compatible with the function definition. They must have the

FPL 14 / 92

same return type and the same parameter types.

The following example is a complete definition of the function sum:

int sum(int x,int y)
{

return(x + y);
}

The function sum returns int, and receives two values declared as x and y.
The function body contains a single statement that returns the sum of x and
y.

To indicate that a function accepts no parameters, use the keyword void as
the type specifier in place of the parameter. For example:

stop(void) { }

In the following example, the function f() takes one integer parameter and
returns no value, while g() expects no parameters and returns an integer.

void f(int); int g(void);

Function Body
~~~~~~~~~~~~~

The body of a function is a block statement. The following function has an
empty body:

void stub1(void) { }

The body of the following function contains a definition for the integer
variable big_num and a call to the function printf:

void largest(int num1, int num2) {
int big_num;

if (num1 >= num2)
big_num = num1;

else
big_num = num2;

printf("big_num = %d\n", big_num);
return 0;

}

Block statements are described in
Statements

.

* Prototypes *MUST* be first in the program. Before any program starts and
outside all braces to be global. Prototyping within the braces of a

function
makes the function only local accessible.



FPL 15 / 92

1.12 General function use

Here follows the ground rules when using/calling a function in ←↩
FPL programs.

* A function call has three major parts:
1 - The function identifier. The name of the function.
2 - A list of parameters. Most functions demands some kind of input.
3 - A return code from the function call.

In the example:

retval = foobar ( "hello", 100 ) ;

Reference letter: A B C D E F G H

A - The variable that received the return code of the function. It must be
be of the type that the function returns. If the function returns a
string, the variable that receives the return code must be a string.
A return code from a function can always be ignored. Often it is wise
to check for progress, but it is always the choice of the programmer.

B - The function name. We call the "foobar" function in this example.

C - Always write the parameter list within parentheses. They tell FPL that
this really is a function. Even functions without in any input
parameters must be called with parentheses (but then without any
parameters in between)!

D - This is the first parameter to the function. Appearantly this function
accepts a string type as first parameter. Any string variable or string
expression is then a valid parameter.

E - Separate all parameters with a comma ",".

F - This is a second parameter. Appearantly this function accepts an
integer type as second parameter. Any integer variable or numerical
expression is then a valid parameter.

G - Conclude the parameter list with a closing parenthesis. Obviously, this
function is happy with two parameters.

H - End of statement is as always indicated with a semicolon ";".

* Internal and external functions might have some arguments optional and some
functions may even accept parameter lists (an optional amount of parameters
of a certain type). All functions must always at least be called with the
number of required arguments as declared. Refer to the software docs.

* There are four kinds of arguments possible to pass to a function :

1. Strings - constant strings or expressions returning strings.

2. Numeric arguments - are likewise read as



FPL 16 / 92

numerical expressions
including everything true expressions consist of. An integer ←↩

argument
can be sent as any kind of "char", "int" or "short" and can be received
by any one of those. FPL is tolerant when speaking about the mix of
such.

3. String variable references - pointer to a
string variable

.

4. Numeric variable references - pointer to an
integer variable

.
Just as with integer arguments, the use of the integers can be any of
the three integer types "char", "short" and "int"/"long".

* All arguments that should be sent to and received in the function must
be declared by comma separating "int", "string", "int *" or "string *".
(Using "char", "short" or "long" is of course working too.)

"int" - sends an integer result of an expression.
"string" - sends a string result.
"int *" - sends a named integer variable.
"string *" - sends a named string variable.

Sending "int *" or "string *" makes the function able to change the
contents of the variables used in the calling function.

All declared arguments are required. Optionals are not possible to declare.

C programmers see the obvious inspiration programming language.

1.13 Constants

Sepcifying constants in FPL can be done in several ways.

Numeric expression constants can be written as:

WHAT HOW EXAMPLE
------------------------------------------------------------------

* octal number an octal number with a zero 012
prefix

* binary number a binary number with a "0b" 0b011010
prefix

* hexadecimal number a hexadecimal number with a 0xDEADBEEF
"0x" prefix

* decimal number a number 129

* ASCII code a character within apostrophes ’a’



FPL 17 / 92

String constants can also be written as:

* octal numbers "\nnn" where nnn is an 1-3 "\12"
digit octal number

* hexadecimal numbers "\xhh" where hh is a two digit "\xea"
hexdecimal number

* a string anything within quots "k i ll^e(rn/injax"

1.14 Blockstatement

A block statement lets you to group any number of data definitions,
declarations, and statements into one statement. All definitions,
declarations, and statements enclosed within a single set of braces are
treated as a single statement. You can place a block wherever a single
statement is allowed.

All definitions and declarations occur at the beginning of a block before
statements. Statements must follow the definitions and declarations. A block
is treated as a single statement.

If you redefine a data object inside a nested block, the inner object hides
the outer object while the inner block is processed. Defining several
variables that have the same identifier can make a program difficult to
understand and maintain. Therefore, you should limit such redefinitions of
identifiers within nested blocks.

If a data object is usable within a block and its identifier is not
redefined, all nested blocks can use that data object.

Initialization of an auto or register variable occurs each time the block is
run from the beginning. If you transfer control from one block to the middle
of another block, initializations are not always performed. You cannot
initialize an extern variable within a block.

Examples

The following example shows how the values of data objects change in nested
blocks:

int main(void)
{

int x = 1; /* Initialize x to 1 */
int y = 3;

if (y > 0)
{

int x = 2; /* Initialize x to 2 */
output("second x = ", x, "\n");

}
output("first x = ", x, "\n");

}



FPL 18 / 92

The example produces the following output:

second x = 2
first x = 1

Two variables named x are defined in main. The definition of x on line 5
retains storage throughout the execution of main. However, because the
definition of x on line 10 occurs within a nested block, line 11 recognizes x
as the variable defined on line 10. Line 13 is not part of the nested block.
Thus, line 13 recognizes x as the variable defined on line 5.

1.15 Statements

These are the statements that FPL includes:

-
Block

-
break

-
continue

-
do

-
Expression

-
for

-
if

-
Null

-
return

-
switch
(New from version 7)

-
while

1.16 Null statement

The null statement performs no operation;

SYNTAX
;

EXAMPLE
int i;
for(i=0; i<100; function(i++))

; /* null statement */



FPL 19 / 92

1.17 Expression statement

Expression statements performs some kind of evaluation of expression(s).

* Statements must feature an action or cause an error.

int a; /***************************************/
a++; /* These are examples of statements */
a=2; /* that include some kind of "action". */
go(a); /***************************************/

2+2; /************************************************/
a; /* These lines are NOT valid stand aloners */
(c>22)*3; /* since they don’t perform any kind of change. */
a-14*a; /************************************************/

Since the release of version 10, FPL does now feature yet another ANSI C
feature:

Expressions containing the operators &&, || or ?: can be only partly
evaluated depending on the results of the other parts. Ex, in the expression
"(a || b)" a is true, and then FPL won’t execute/evaluate b. Likewise "(a &&
b)" where a is FALSE, will never reach b. Also "a=b?c:d" will reach c only if
b is true, and d only if b is false!!

1.18 Keywords

Detailed information is obtained in the
keyword reference

.

Summary:
========

* Loop statements are done very similarly as in C, using the ’for’, ’while’
or ’do’ statements. They are used as in the C programming language:
(with exception for the wonderful "else" statement in "while"... )

do
{
statement

;} while (
expression
)

while
(
expression
) {
statement

; } [



FPL 20 / 92

else
{
statement

: } ]

for
(
expression1

;
expression2

;
expression3

) {
statement

; }

A feature (which I’ve always been missing when coding C) has been
added, and that’s ‘else’ after ‘while’! If the condition never goes
true, the ’else’ statement will be executed.

continue
works 100% as in C.

break
is like break in C, but extended with an optional level

argument.

* Take care of exceptions just as you do in C using statements like:

if
(
expression
) {
statement

; } [
else
{
statement

; } ]

* Declare variables and functions by using the keywords:

int
,
char

,
short
and
long
that all creates numerical variables.



FPL 21 / 92

string
declares a string variable.

resize
changes the size of an already existing array.

export
tells FPL that the following global declaration

is to be exported. Exported global symbols are accessible in any file.

More variable declaration details
.

* Exit programs or functions by using:

exit
or
return

1.19 Hints and tricks

Since I’ve created FPL and know about its inner workings, I’ll ←↩
try to sum a

few words about what could be useful to think of when coding FPL.

General
=======

Parenthesized expressions will help you from making mistakes in expressions
due to lack of operator precedence knowledge.

Do not declare unnecessary variables or variables you don’t have to use. Try
to reuse already declared ones and stay away from the nasty variable
declaration

keywords
!

Of course FPL is a perfect example of using a C programming preprocessor if
you want preprocessor features like include files, macros and such goodies.
FPL currently works perfect running preprocessed programs including the
preprocessor instruction "#line".

Interpreting speed
==================

FPL Performance philosophy is a structured programmer’s nightmare coming
true. What is said to be ugly or even dirty coding in C, in fact often is to
prefer in FPL since it’s interpreting one statement at a time.

Do as much as you can in as few
statements



FPL 22 / 92

as possible is a golden rule.
Use as few function calls as possible. Try to append everything possible to
the function’s argument and call it only once.

Use
compound
and nested
variable assigns

! FPL has no compiler, which
makes statements like "a=a+2; b=b+a; function(a);" interpret MUCH slower than
"function(b+=(a+=2))" even though it might look better and be more readable.
(If it was hard to code it should be hard to read, right?)

Avoid long and complicated
string handlings

. If you must use a string, try
putting it in a variable and refer to that variable as much as possible.
Especially loops will benefit a *LOT* in speed. Future version of FPL might
deal with static strings (non-variable referenced) in a better way.

Bug hunting
===========

Of course even FPL routines will be coded incorrect from time to time.

Comment your code. It’s not hard, decreases performance only slightly and
makes it so very much easier to change the code. And who knows, perhaps
someone else would want to change it in the future!

Wait for the soon appearing FPL debugger!

1.20 Numeric expressions (and operators)

Numeric expressions are a basic part of FPL programs. ←↩
Expressions are

evaluated on the basis of the operators that the expressions contain and the
contexts where the expressions can be used.

Constants
Not changing values

Grouping and evaluating
Precedence, associativity, etc

Primary Expressions
Parentheses, function calls

Unary Expressions
++, --, +, -, !, ~

Binary Expressions
(*, /, %, +, -, <<, >>, <, >, <=, >=, ==, etc)



FPL 23 / 92

Assignment expressions
(+=, -=, *=, /=, %=, etc)

Conditional Expressions
(?, :)

Comma expressions
(,)

1.21 Grouping and evaluating

Two operator characteristics determine how operands group with ←↩
operators:

precedence and associativity. Precedence provides a priority system for
grouping different types of operators with their operands. Associativity
provides a left-to-right order for grouping operands to operators that have
the same precedence.

You can explicitly state the grouping of operands with operators by using
parentheses.

In the expression

a + b * c / d

the * and / operations are evaluated before + because of precedence. b is
multiplied by c before it is divided by d because of associativity.

The following table lists the FPL language operators in their order of
precedence. The operators are listed in order of precedence:

primary
operators have the highest precedence, and the
comma operator
has the lowest

precedence. Operators that appear in the same group have the same precedence.

FPL’s operator precedence is 100% ANSI C compatible.

Operator Precedence and Associativity (decreasing order):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Operator Type Associativity Operators
------------- ------------- ---------

Primary
left to right (), function calls

Unary
right to left ++ -- - + ! ~ []

Multiplicative
left to right * / %

Additive

FPL 24 / 92

left to right + -

Bitwise Shift
left to right << >>

Relational
left to right < > <= >=

Equality
left to right == !=

Bitwise Logical AND
left to right &

Bitwise Exclusive OR
left to right ^

Bitwise Inclusive OR
left to right |

Logical AND
left to right &&

Logical OR
left to right ||

Conditional
right to left ? :

Assignment
right to left = += -= *= /= <<= &= ^= |= >>=

Comma
left to right ,

The order of evaluation for the operands of the logical AND (&&) and the
logical OR (||) operators is always left-to-right. If the operand on the left
side of a && operator evaluates to 0 (zero), the operator on the right side is
not evaluated. If the operand on the left side of a || operator evaluates to
nonzero, the operator on the right side is not evaluated.

Examples

The parentheses in the following expressions explicitly show how FPL groups
operands and operators:

total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5/3));

FPL group operands with operators that are both associative and commutative
in a simple left-to-right order. We group the operands and operators of the
expression

total = price + prov_tax + city_tax;

FPL 25 / 92

in the following way (as indicated by parentheses):

total = ((price + prov_tax) + city_tax);

TECH NOTE:
~~~~~~~~~~
In C, the example above could have been evaluated the following ways too

total = ((price + city_tax) + prov_tax);
total = (price + (prov_tax + city_tax));

But that’s not too good if you want to use expressions like
a = b++ + (b>10?10:20);

since you wouldn’t know in which order the b variable is read and used... FPL
reads and uses it in a left-to-right order.

1.22 Primary expressions

All primary operators have the same precedence and have left-to- ←↩
right

associativity. See
Grouping and Evaluating FPL Expressions
For detailed information on primary operators, see

Parenthesized Expressions

Function calls

1.23 Parenthesized Expressions

You can use parentheses to explicitly state how operands group with
operators. The following expression does not contain any parentheses used for
grouping operands and operators. The parentheses surrounding weight and
zipcode form a function call. Notice how FPL groups the operands and operators
in this expression:

Expression without Parentheses:

-discount * item + handling(weight, zipcode) > 10 * item

The following expression is similar, but contains parentheses that change how
the operands and operators are grouped:

Expression with Parentheses:

(-discount * (item + handling(weight, zipcode))) > (10 * item)

1.24 Function calls



FPL 26 / 92

A function call is a primary expression followed by a parenthesized argument
list. The argument list can contain any number of expressions separated by
commas, or it can be empty.

For example:

stub()

overdue(account, date, amount)

notify(name, (date+5))

report(error, time, date, (num++))

The arguments are evaluated, and each parameter is assigned the value of the
corresponding argument. Assigning a value to a parameter changes the value
with in the function, but has no effect on the argument.

1.25 Unary Expression

An unary expression contains one operand of scalar type and an ←↩
unary

operator. All unary operators have the same
precedence

. As indicated in the
following descriptions, the usual arithmetic conversions are performed on the
operands of most unary expressions.

Bitwise Negation ~

Decrement --

Increment ++

Logical Negation !

Unary Minus -

Unary Plus +

1.26 Increment ++

The ++ (increment) operator adds 1 (one) to the value of the operand. The
operand receives the result of the increment operation.

You can place the ++ before or after the operand. If the ++ appears before
the operand, the operand is incremented; then the incremented value is used in
the expression. If you place the ++ after the operand, the current value of
the operand is used in the expression; then the operand is incremented. For
example:



FPL 27 / 92

play = ++play1 + play2++;

is equivalent to the following sequence of expressions:

play1 = play1 + 1;
play = play1 + play2;
play2 = play2 + 1;

In the C language they say "avoid using a variable more than once in an
expression where the variable is incremented". But that’s not necessary in
FPL! I’ve created it to work as I wanted it, and so it does...

y = x(i) + i++;

Does work exactly as you think; first calls the function x(), adds the value
of i and finally increases i.

1.27 Decrement --

Acts as the
++ operator

, but instead of adding it’s subtracting!

1.28 Unary plus +

The + (unary plus) operator maintains the value of the operand.

The result of applying the unary plus operator to a signed operand is
equivalent to the promoted type of the operand.

1.29 Unary minus -

The - (unary minus) operator negates the value of the operand.

The result of applying the unary minus operator to a signed operand is
equivalent to the negative promoted type of the operand.

For example, if quality has the value 100, then -quality has the value -100.

1.30 Logical negation !

The ! (logical negation) operator determines whether the operand evaluates to
0 (false). If so, the operation yields the value 1 (true). If the expression
evaluates to a nonzero value, the operation yields the value 0 (false).

If right is not equal to 0, the following two expressions are equivalent:



FPL 28 / 92

!right;
right == 0;

1.31 Bitwise negation ~

The ~ (bitwise negation) operator yields the ones complement of the operand.
In the binary representation of the result, every bit has the opposite value
of the same bit in the operand.

Suppose x represents the decimal value 5. The 32-bit binary representation of
x is:

00000000000000000000000000000101

The expression ~x yields the following result, represented here as a 32-bit
binary number:

11111111111111111111111111111010

The 32-bit binary representation of ~0 is:

11111111111111111111111111111111

1.32 Binary expressions

A binary expression contains two operands separated by one ←↩
operator.

Not all binary operators have the same
precedence

.

To ensure correct results, avoid creating expressions that depend on the
order in which FPL evaluates the operands.

Addition +

Bitwise AND &

Bitwise Exclusive OR ^

Bitwise Inclusive OR |

Bitwise Shift << >>

Division /

Equality == !=

Logical AND &&



FPL 29 / 92

Logical OR ||

Multiplication *

Relational < > <= >=

Remainder %

Subtraction -

1.33 Multiplication *

The * (multiplication) operator yields the product of its operands.

Because multiplication has both associative and commutative properties, the
operands will be grouped in a left-to-right order. For example, the
expression:

sites * number * cost

is interpreted in the following way:

(sites * number) * cost

1.34 Division /

The / (division) operator yields the quotient of its operands.

If both operands are positive integers and the operation produces a remainder,
FPL ignores the remainder. Thus, the expression 7 / 4 yields the value 1
(rather than 1.75 or 2).

The C language does not define how the compiler treats the quotient when
either of the operands has a negative value. Thus, -7 / 4 can yield either -1
or -2. However, on all IBM C compilers, -7 / 4 always results in a quotient of
-1 and a

remainder
of -3, and that’s the rule FPL has been following.

It ends up in an error message if the second operand (the denominator)
evaluates to 0 (zero).

1.35 Remainder %

The % (remainder) operator yields the remainder from the
division
of the

left operand by the right operand. For example, the expression 5 % 3 yields
2.



FPL 30 / 92

If the right operand evaluates to 0 (zero), it results in an error message. If
either operand has a negative value, the result is such that the following
expression always yields the value of a if b is not 0 (zero):

( a / b ) * b + a % b;

1.36 Addition +

The + (addition) operator yields the sum of its operands.

1.37 Subtraction -

The - (subtraction) operator yields the difference of its operands.

1.38 Bitwise left and right shift << >>

The bitwise shift operators move the bit values of a binary object. The left
operand specifies the value to be shifted. The right operand specifies the
number of positions that the bits in the value are to be shifted.

The << (bitwise left shift) operator indicates the bits are to be shifted to
the left. The >> (bitwise right shift) operator indicates the bits are to be
shifted to the right.

The right operand should not have a negative value or a value that is greater
than the width in bits of the expression being shifted. Bitwise shifts on such
values give unpredictable results.

If the right operand has the value 0 (zero), the result is the value of the
left operand (after the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if l_op has the
value 4019, the bit pattern (in 32-bit format) of l_op is:

00000000000000000000111110110011

The expression l_op << 3 yields:

00000000000000000111110110011000

The result is the integral part of the quotient of the left operand divided by
the quantity, 2 raised to the power of the right operand. If the left operand
has a negative value, the vacated bits of a signed value are filled with a
copy of the sign bit of the unshifted value. For example, if l_op has the
value -25, the bit pattern (in 32-bit format) of l_op is:

11111111111111111111111111100111

Vacated bits are filled with ones, and the expression l_op >> 3 yields:



FPL 31 / 92

11111111111111111111111111111100

1.39 Relational < > <= >=

The relational operators compare two operands for the validity of a
relationship. If the relationship stated by the operator is true, the value of
the result is 1 (one). Otherwise, the value of the result is 0 (zero).

FPL has the following relational operators:

Operator Usage

< Indicates whether the value of the left operand is less than
the value of the right operand.

> Indicates whether the value of the left operand is greater than
the value of the right operand.

<= Indicates whether the value of the left operand is less than or
equal to the value of the right operand.

>= Indicates whether the value of the left operand is greater than
or equal to the value of the right operand.

Relational operators have also left-to-right associativity. Therefore, the
expression:

a < b <= c

is interpreted as:

(a < b) <= c

If the value of a is less than the value of b, the first relationship is true
and yields the value 1 (one). The value 1 (one) is then compared with the
value of c.

1.40 Equality == !=

The equality operators, like the relational operators, compare two operands
for the validity of a relationship. The equality operators, however, have a
lower precedence than the relational operators. If the relationship stated by
an equality operator is true, the value of the result is 1 (one). Otherwise,
the value of the result is 0 (zero).

FPL has the following equality operators:

Operator Usage

== Indicates whether the value of the left operand is equal to the
value of the right operand.



FPL 32 / 92

!= Indicates whether the value of the left operand is not equal to
the value of the right operand.

The following expressions contain examples of equality and relational
operators:

time < max_time == status < complete
hello != world

1.41 Bitwise AND &

The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s, the
corresponding bit of the result is set to 1. Otherwise, it sets the
corresponding result bit to 0.

The following example shows the values of a, b, and the result of a & b
represented as 32-bit binary numbers:

bit pattern of a 00000000000000000000000001011100

bit pattern of b 00000000000000000000000000101110

bit pattern of a & b 00000000000000000000000000001100

1.42 Bitwise Exclusive OR ˆ

The ^ (bitwise exclusive OR) operator compares each bit of its first operand
to the corresponding bit of the second operand. If both bits are 1’s or both
bits are 0’s, the corresponding bit of the result is set to 0. Otherwise, this
operator sets the corresponding result bit to 1.

The following example shows the values of a, b, and the result of a ^ b
represented as 32-bit binary numbers:

bit pattern of a 00000000000000000000000001011100

bit pattern of b 00000000000000000000000000101110

bit pattern of a^b 00000000000000000000000001110010

1.43 Bitwise inclusive OR |

The | (bitwise inclusive OR) operator compares the values (in binary format)
of each operand and yields a value whose bit pattern shows which bits in
either of the operands has the value 1 (one). If both of the bits are 0
(zero), the result of the comparison is 0 (zero); otherwise, the result is 1
(one).



FPL 33 / 92

The following example shows the values of a, b, and the result of a | b
represented as 32-bit binary numbers:

bit pattern of a 00000000000000000000000001011100

bit pattern of b 00000000000000000000000000101110

bit pattern of a | b 00000000000000000000000001111110

1.44 Logical AND &&

The && (logical AND) operator indicates whether both operands have a nonzero
value. If both operands have nonzero values, the result has the value 1 (one).
Otherwise, the result has the value 0 (zero).

The following examples show how the language evaluates expressions that
contain the logical AND operator:

Expression Result
~~~~~~~~~~ ~~~~~~
1 && 0 0

1 && 4 1

0 && 0 0

Expressions like "a && b" will only evaluate b if a is false!

NOTE: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example,

1 && 4 evaluates to 1

while

1 & 4 evaluates to 0

1.45 Logical OR ||

The || (logical OR) operator indicates whether either operand has a nonzero
value. If either operand has a nonzero value, the result has the value 1
(one). Otherwise, the result has the value 0 (zero).

The following examples show how expressions that contain the logical OR
operator are evaluated:

Expression Result
~~~~~~~~~~ ~~~~~~
1 || 0 1



FPL 34 / 92

1 || 4 1

0 || 0 0

Expressions like "a || b" will only reach b if a is false.

NOTE: The logical OR (||) should not be confused with the bitwise OR (|)
operator. For example,

1 || 4 evaluates to 1

while

1 | 4 evaluates to 5

1.46 Conditional expressions

(operand1?operand2:operand3)

A conditional expression is a compound expression that contains a condition
(operand1), an expression to be evaluated if the condition has a nonzero value
(operand2), and an expression to be evaluated if the condition has the value 0
(zero) (operand3).

The conditional expression contains one two-part operator. The ? symbol
follows the condition, and the : symbol appears between the two action
expressions. All expressions between the operators ? and : are treated as one
expression.

Examples
~~~~~~~~

The following expression determines which variable has the greater value, y
or z, and assigns the greater value to the variable x:

x = (y > z) ? y : z;

The following is an equivalent expression:

if (y > z) {
x = y;

} else {
x = z;

}

The following expression assigns an integer. If the variable c is less than
zero, output receives the value of c. If not, output receives the return code
from the search function.

c = c<0?c:search("hello");

If the last operand of a conditional expression contains an assignment
operator, use parentheses to ensure the expression evaluates properly. For
example, the = operator has higher precedence than the ?: operator in the

FPL 35 / 92

following expression:

(i == 7) ? j ++ : k = j;

This expression generates an error because it is interpreted as if it were
parenthesized this way:

((i == 7) ? j ++ : k) = j;

That is, k is treated as the third operand, not the entire assignment
expression k = j. The error arises because a conditional expression is not an
lvalue, and the assignment is not valid.

To make the expression evaluate correctly, enclose the last operand in
parentheses:

(i == 7) ? j ++ : (k = j);

1.47 Assignment expressions

An assignment expression gives a value to the left operand.

The left operand in all assignment expressions must be a variable. The value
of the expression is the value of the left operand after the assignment is
completed.

The language contains two types of assignment operators,
simple assignment

and
compound assignment
operators.

1.48 Simple assignment =

The simple assignment operator gives the value of the right operand to the
left operand.

The following example assigns in order the value 0 (zero) to strangeness, the
value of strangeness to charm, the value of charm to beauty, and the value of
beauty to truth:

truth = beauty = charm = strangeness = 0;

1.49 Compound assignment

The compound assignment operators perform an operation on both operands and
give the result of that operation to the left operand.

The following table lists the compound assignment operators and shows an
expression using each operator:

FPL 36 / 92

Operator Example Equivalent Expression
-------- ------- ---------------------
+= index += 2 index = index + 2
-= balance -= debit balance = balance - debit

*= bonus *= increase bonus = bonus * increase
/= time /= hours time = time / hours
%= allow %= 1000 allow = allow % 1000
<<= result <<= num result = result << num
>>= form >>= 1 form = form >> 1
&= mask &= 2 mask = mask & 2
^= test ^= pre_test test = test ^ pre_test
|= flag |= on flag = flag | on

Although the equivalent expression column shows the left operands (from the
example column) evaluated twice, the left operand is evaluated only once.

Note that the expression

a *= b + c

is equivalent to

a = a * (b + c)

and NOT

a = a * b + c.

1.50 Comma expressions

A comma expression contains two operands separated by a comma operator.
Although both operands are evaluated, the value of the right operand is the
value of the expression. The left operand is evaluated, possibly producing
side effects, and then the value is discarded.

In the following example, if omega has the value 11, the expression
increments delta and assigns the value 3 to alpha:

alpha = (delta++, omega % 4);

Any number of expressions separated by commas can form a single expression.
The leftmost expression is evaluated first. The value of the rightmost
expression becomes the value of the entire expression. For example, the value
of the expression

intensity++, shade * increment, rotate(direction);

is the value of the expression

rotate(direction);

Restrictions

FPL 37 / 92

You can place comma expressions within lists that contain commas (for
example, argument lists and initializer lists). However, because the comma has
a special meaning, you must place parentheses around comma expressions in
these lists. The comma expression t = 3, t + 2 is contained in the following
function call:

f(a, (t = 3, t + 2), c);

The arguments to the function f are: the value of a, the value 5, and the
value of c.

1.51 Keywords

FPL supplies a number of keywords that’ll help executing the ←↩
program. (You

might recognize several of them from the C programming language, but please
read the descriptions carefully cause some of the keywords behave in a
slightly different way in FPL.)

These keywords are e.g looping
functions
and conditional checks etc. The

"arguments" to these keywords are a bit special and tricky, they are therefore
not included in this table. Refer to keyword reference for proper syntax.

Keyword Short Description
-------- -----------

auto
No global variable.

break
Break out of a number of levels of loop braces.

case
Used in switch() statements for a specific case.

char
Create a 8-bit signed numerical variable.

const
Constant variable.

continue
Continue the loop.

debug
Control debug mode.

default
Specifies default action in a switch() statement.

do
do {statement} while (expression);

FPL 38 / 92

exit
Stop executing this FPL routine.

for
for(statement1;statement2;statement3)

if
if(condition) {statement} [else {statement}]

int
Creates an 32-bit integer variable.

long
Equivalent to ‘int’.

register
No global variable.

resize
Resize a variable array.

return
Return from subroutine.

short
Create a 16-bit signed numerical variable.

static
Remember local variables between invokes.

string
Creates a string variable named [name].

switch
Do different actions on different results.

typedef
Make declarator aliases.

volatile
FPL variables are always volatile.

while
while(condition) {statement} [else {statement}]

These keywords are reserved for FPL use, but do nothing today:

’double’ Not implemented.
’enum’ Not implemented.
’float’ Not implemented.
’signed’ ALL variables are always signed.
’struct’ Not implemented.
’union’ Not implemented.
’unsigned’ Not implemented.

FPL 39 / 92

1.52 break

SYNTAX break [expression];

DESCRIPTION
A break statement enables you to end iterative (do, for, while,
switch statements and exit from them at any point other than the
logical end.

The break statement ends the loop or switch and moves control to the
next statement outside the loop/switch. Within nested statements,
break ends only the smallest enclosing do, for, while or switch
statement as default.

The possible "else" statement after a while, is *NOT* a loop.

Specifying a following expression breaks out of a number of iterative
statements.

RESTRICTIONS
Place a break statement only in the body of an iterative statement.

EXAMPLES

The following example shows a break statement in the action part of a
for statement. If the i*3 is equal to 9, the break statement causes
the for statement to end.

for (i = 0; i < 5; i++) {
if (i*3 == 9)

break;
length++;

}

Break out of a number of loops by giving an argument:

for(i = 0; i < 5 ; i++) {
for(j = 0; j < 5 ; j++) {

if(i*5+j>18) {
break 2; // Breaks out of two ‘for’ loops!

}
}

}

Break out of a switch() statement:

switch(i) {
case 2:

break;

default:
}

SEE
do

,

FPL 40 / 92

for
,
while

,
switch

1.53 case

SYNTAX case expression: statement;

DESCRIPTION
The ’case’ statement can only be used within a switch statement. It
tells that the following statements should be run if the result of
the case expression is the result of the switch expression.

The expression must be followed by a colon ’:’.

Break the case statement with a ’break’. Then the execution will
continue after the switch() statement.

NOTE
If the expression contains a colon ’:’, it must be with parentheses
or it can confuse the interpreter under certain conditions.

EXAMPLE
The following program show a switch() statement with three cases:

switch(Character()) {
case ’\t’:
case ’ ’:

a = 0;
break;

case ’\n’:
a = -1;
break;

default:
a = 1;
break;

}

SEE ALSO

switch
,
break

,
default

1.54 char

FPL 41 / 92

SYNTAX char name [= expression];

DESCRIPTION
Declares a char (signed 8-bit) variable (and assign a value to it).
Read more about it the chapter discussing variables. Not assigned
variables equals zero (0) after declaration.

INPUTS string name - The variable name.
char expression - Initial expression.

SEE
int

short

string

1.55 continue

SYNTAX continue;

DESCRIPTION
A continue statement enables you to stop the current iteration of a
loop. Program control is passed from the location in the body of the
loop where the continue is found, to the condition part of the loop.

The continue statement ends the execution of the action part of a do,
for, or while statement and moves control to the condition part of
the statement. If the iterative statement is a for statement, control
moves to the third expression in the condition part of the statement,
then to the second expression (the test) in the condition part of the
statement.

Within nested statements, the continue statement ends only the
current iteration of the do, for or while statement immediately
enclosing it.

RESTRICTIONS
Place a continue statement only within the body of an iterative
statement.

EXAMPLES
The following example shows a continue statement in a for statement.
The continue statement causes the system to skip over those elements
of the formula that have values less than or equal to 100.

output("Try this calculation while <=100.\n");
for (i = 0; i < 10000; i++) {

if (i*(3-b/c+a) <= 100)
continue;

output("The number ", i, " makes it no longer below!");
}

SEE

FPL 42 / 92

do
,
for

,
while

1.56 default

SYNTAX default: statement;

DESCRIPTION
The ’default’ statement can only be used within a switch statement.
It tells that the following statements is the default action if no
case expressions match the switch expression.

The keyword must be followed by a colon ’:’.

Break the default statement with a ’break’. Then the execution will
continue after the switch() statement.

EXAMPLE
This program executes the ’default’ statement if ’x’ does not match
"foo" or "bar":

switch(x) {
case "foo": /* if x is "foo" */
case "bar": /* if x is "bar" */
/* nananana */
break; /* break out of switch */

default:
foobar(); /* if x isn’t "foo" or "bar" */
break;

}

SEE ALSO

switch
,
break

,
case

1.57 do

SYNTAX do statement; while (expression) ;

DESCRIPTION
A do statement repeatedly executes a statement until a test
expression evaluates to 0 (zero). Because of this order of
processing, the statement is processed at least once.

FPL 43 / 92

The body of the loop is run before the controlling while clause is
evaluated. Further processing of the do statement depends on the
value of the while clause. If the while clause does not evaluate to
0 (zero), the statement runs again. Otherwise, processing of the
statement ends.

A break or return statement can cause the processing of a do
statement to end, even when the while clause does not evaluate to 0
(zero).

EXAMPLES
The following statement prompts the system user to enter a 1. If the
system user enters a 1, the statement ends execution. If not, the
statement displays another prompt.

do {
input("Enter a 1!", reply);

} while (reply != 1);

SEE
break

,
continue

,
return

1.58 else

SYNTAX <special>

DESCRIPTION
Used after condition checks to make FPL execute certain parts of the
program if the previous check did not evaluate true.

It always belongs to the last ‘if’/‘while’ in this block.

EXAMPLES
It can be used in simple one time checks like:

if(a!=2)
break;

else
output("hello"); /* only executed if variable a equals 2 */

and even if a while loop never is executed:

while(a--)
output(a);

else
output("hello"); // only executed if the while condition never

// was true.

Take a look at the two examples below and note the difference!

1. If both "a" and "b" are true, then invoke "build_new_things". if

FPL 44 / 92

"a" is false, invoke "crash_mostofit":

if(a) { // braces are required if we want the ‘else’ to affect this
if(b)

build_new_things();
} else

crash_mostofit();

2. If "a" and "b" are true, then invoke "build_new_things". If "a" is
true and "b" is false, invoke "crash_mostofit":

if(a) // without braces, the else suddenly affects the other if!
if(b)

build_new_things();
else

crash_mostofit();

1.59 exit

SYNTAX exit(return_code);

DESCRIPTION
Stop execution of the current FPL routine.

INPUTS int/string return_code - Return code to return to the calling
process.

See the documentation for the software you’re controlling for the
exact meaning of these return codes. The return code can be excluded
as well as the parenthesis can when returning a value.

RETURNS
A result code to the invoking environment.

SEE ALSO

return

1.60 export

SYNTAX export [global declaration];

DESCRIPTION
Make the following global symbol available to all programs.

EXAMPLES
The following statements make the function "foobar" and the string
variable "String" accessiable to all other FPL programs that will
succeed this program:

export string String;
export int foobar(int);

FPL 45 / 92

/* the actual function foobar must reside in the same source file */

1.61 for

SYNTAX for ([expression1] ; [expression2] ; [expression3]) ←↩
statement;

DESCRIPTION
Expression1

is evaluated only before the statement is processed for the first
time. You can use this expression to initialize a variable. If you
do not want to evaluate an expression prior to the first iteration
of the statement, you can omit this expression.

Expression2
is evaluated before each iteration of the statement. The expression
must evaluate to a scalar type. If it evaluates to 0 (zero), the
statement is not processed and control moves to the next statement
following the for statement. If expression2 does not evaluate to 0,
the statement is processed. If you omit expression2, it is as if
the expression had been replaced by a nonzero constant and the for
statement is not terminated by failure of this condition.

Expression3
is evaluated after each iteration of the statement. You can use
this expression to increase, decrease, or reinitialize a variable.
If you do not want to evaluate an expression after each iteration
of the statement, you can omit this expression.

A break or return statement can cause the processing of a for
statement to end, even when the second expression does not evaluate
to 0 (zero). If you omit expression2, you must use a break or a
return statement to stop the the for statement from running.

EXAMPLES

The following for statement prints the value of count 20 times. The
for statement initially sets the value of count to 1. After each
iteration of the statement, count is incremented.

for (count = 1; count <= 20; count++) {
output("count =", count);

}

The following sequence of statements accomplishes the same task. Note
the use of the while statement instead of the for statement.

count = 1;
while (count <= 20) {

output("count = ", count);
count++;

}

The following for statement does not contain an initialization
expression.

FPL 46 / 92

for (; index > 10; index--) {
list= var1 + index;
output("list = ", list, "\n");

}

The following for statement continues running until input receives
the letter e:

for (;;) {
input("Gimme an e!", letter);
if (!strcmp(letter, "\n"))

continue;
else if (!strcmp(letter, "e"))

break;
output("You entered the letter", letter);

}

The following for statement contains multipart initializations and
increments. The comma operator makes this construction possible.

for (i = 0, j = 50; i < 10; i++, j += 50) {
output("i = ", i, " and j = ", j);

}

The following example shows a nested for statement. The outer
statement is run as long as the value of row is less than 5. Each
time the outer for statement is processed, the inner for statement
sets the initial value of column to zero and the statement of the
inner for statement is run three times. The inner statement is run
as long as the value of column is less than 3.

for (row = 0; row < 5; row++) {
for (column = 0; column < 3; column++)

output("column * row =", row * column, "\n");

A never-ending loop using ‘for’:

for(;;)
perform_until_death();

SEE
break

,
continue
,
do
,
while

1.62 if

SYNTAX if (expression) statement; [else statement;]

DESCRIPTION

FPL 47 / 92

An if statement allows you to conditionally process a statement if
the specified test expression evaluates to a nonzero value. You can
optionally specify an else clause on the if statement. If the test
expression evaluates to 0 (zero), and an else clause exists, the
statement in the else clause is run. If the test expression evaluates
to a nonzero value, the statement following the expression runs and
the else clause is ignored.

When if statements are nested and else clauses are present, a given
else is associated with the closest preceding if statement within the
same block.

EXAMPLES
The following example causes grade to receive the value A if the
value of score is greater than or equal to 90.

if (score >= 90)
grade = A;

The following example displays number is positive if the value of
number is greater or equal to 0 (zero). Otherwise, the example
displays number is negative.

if (number >= 0)
output("number is positive\n");

else
output("number is negative\n");

The following example shows a nested if statement:

if (paygrade == 7)
if (level >= 0 && level <= 8)

salary *= 2;
else

salary *= 3;
else

salary *= 4;

The following example shows an if statement that does not have an
else clause.

if (gallons > 0) {
if (miles > gallons)

mpg = miles/gallons;
} else

mpg = 0;

The following example shows an if statement nested within an else
clause. This example tests multiple conditions. The tests are made
in order of their appearance. If one test evaluates to a nonzero
value, an action statement runs and the entire if statement ends.

if (value > 0)
increase++;

FPL 48 / 92

else if (value == 0)
breaeven++;

else
++decrease;

1.63 int

SYNTAX int name [= expression];

or

long name [= expression];

DESCRIPTION
Declare an integer (signed 32-bit) variable and assign a value to it.
Read more about it the chapter discussing variables. Not assigned
variables equals zero (0) after declaration.

ANSI C specifies that ‘long’ should be a 32-bit number and ‘int’ is
more vague. The MC680x0 processor series has - as all decent
processors have - 32-bit integers, which make them the exact same
data type. FPL is mostly run on such processors making this
equivalence natural.

INPUTS string name - The variable name.
int/long expression - Initial expression.

SEE
string

,
char

,
short

1.64 resize

SYNTAX resize name [new_size] ;

DESCRIPTION
A common problem when using arrays is that you don’t know the size of
it already from the start. This keyword brings a solution to that
problem. This one resizes the named array to the new size you specify
inside the square brackets. Notice that it’s also possible to reduce
the size, so be careful not to destroy data you like to reuse.

WARNING: Using multi dimensional arrays and ‘resize’ is a dangerous
combination. E.g when changing an array from "[4][5]" to "[5][5]",
the old values will not any longer be readable in their old array
members. A resize of this kind makes the data move around a bit
depending on the internal data array storage. DO NOT USE ‘resize’ IN
MULTI DIMENSIONAL ARRAYS IF YOU WANT THE DATA TO STAY INTACT!

FPL 49 / 92

INPUTS
name - The name of the array you’d like to resize.
new_size - The new size of the array.

EXAMPLES
To make a list of all the names the user enters, you need an array as
big as the user pleases. But declaring an enormous size from the
start really isn’t to recommend. This example shows one way to solve
such a problem:

int roof=10, num;
string names[roof];
do {

if(num==roof)
resize names[roof+=10];

names[num]=input("Insert name number " num ":");
} while(names[num++]!="");

Multi dimensional arrays looses their proper values when resizing, do
copy the array to preserve to contents:

int a[DIM1][DIM2]; // This is the old array construction
{

/* This could with benefit be written into a function to be
called from several instances */

int n1, n2; // counter variables
int b[NEWDIM1][NEWDIM2]; // The temporary new array outfit!

for(n1=0; n1<DIM1 && n1<NEWDIM1; n1++) // temporary store all
for(n2=0; n2<DIM2 && n2<NEWDIM2; n2++) // vital data in array b

b[n1][n2]=a[n1][n2];

resize a[NEWDIM1][NEWDIM2]; // resize a

for(n1=0; n1<NEWDIM1; n1++) // restore all data to array a
for(n2=0; n2<NEWDIM2; n2++)

a[n1][n2]=b[n1][n2];
}

1.65 return

SYNTAX return [return_code];

DESCRIPTION
A return statement ends the execution of the current function and
returns a return code and control to the caller of it. The return
code is written exact as in C, within parentheses or not. It can
also be totally excluded.

EXAMPLES
We use a function to print the result of the formula, but only if
the result is even:

FPL 50 / 92

int n;
int print(int);
for(n=0; n<10; n++)

n+=printf(n*n);
exit;

int print(int a)
{

if(!(a&1))
output(a);

return(a&2); /* Get back to the for loop */
}

SEE
exit

,
break

1.66 short

SYNTAX short name [= expression];

DESCRIPTION
Declares a short (signed 16-bit) variable (and assigns a value to
it). Read more about it the chapter discussing

variables.
Not

assigned variables equal zero (0) after declaration.

INPUTS string name - The variable name.
short expression - Initial expression.

SEE
int
,
char
,
string

1.67 string

* Strings are always written enclosed within quotation marks (").

* To read the ASCII value of a single character within a string, use
square brackets in the form: name[index] where name is the name of
the string variable (could of course also be an array memb

er) and

i
ndex is

the column you want to check out. Index below zero or above
the length of the source string will result in error. The following

FPL 51 / 92

examp
le
outputs all ASCII c

odes in a string:

string str = "hello world";
int ascii, n;
while (ascii = str[n++]) {

output (ascii "n");
}

This example will output all ASCII values in column 2 in the strings
in the array:

string str[3] = {"hello", "world", "string"};
int n;
for (n = 0; n < 3; n++) {

output (str[n][2] "n")
}

Reading beyond the end of a string simply returns a zero, while
reading a negative column will result in an error.

* Strings not enclosed within quotes are assumed to be variable names.

Note the difference between:

output("Hello");

and

output(Hello);

(Example 1 outputs the actual string "Hello", while example 2 outputs
the contents of the variable *named* "Hello".)

* Append strings to a string variable by using the ’+=’ operator. Ex:

string a="Hello ";
a+="world";
output(a);

Outputs the string "Hello world" on the screen.

string a = "Hello ";
string b ="world";
output(a + b);

* Special characters within strings should be symbolized with backslash
and a character just as in the good old C standard:
a - Alert (bell)
b - Backspace
f - Form feed (new page)
n - New-line
r - Carriage return
t - Horizontal tab

FPL 52 / 92

v - Vertical tab
’ - Single quotation mark
" - Double quotation mark
? - Question mark
\ - Backslash
xhh - hex number, where "hh" is a two digit hexadecimal value.
nnn - octal number, where "nnn" is a three digit octal value.

See also the function~reference for string handling functions such as
~strcmp(), strncmp(), substr(),~eval() and more.

1.68 typedef

SYNTAX typedef <declarator> <symbol>;

DESCRIPTION
‘typedef’ allows you to define your own identifiers that can be used
in place of FPL type specifiers such as int, string and char. The
data types you define using ‘typedef’ are not new data types; they
are synonyms for the primary data types used by FPL.

EXAMPLES
This example creates a synonym for int and then use that to declare
three integral variables:

typedef int LENGTH; /* new declarator named ‘LENGTH’ */
LENGTH length, width, height;

1.69 switch

SYNTAX switch (expression) { [case expression:] [default: ←↩
expression] }

DESCRIPTION
A switch statement lets you define actions to different results of
the switch expression.

The result of the expression written within the parentheses following
the switch keyword is matched against the expressions following the
’

case
’ keywords within the braces. If no match is found the action

specified after ’
default

’ will be run. If no ’default’ is defined
either, nothing will happen.

The switch expression may be either a string or numerical expression.
The expressions in the following case statements have to be of the
same expression type as the initial one, or FPL will report error.

Multiple cases may be specified with the same expression, but only

FPL 53 / 92

the first one that match the switch expression will be run.

A case statement is aborted by a
break
statement or the brace

ending the switch statement.

NOTE
Unlike C, FPL handles dynamic expressions in case-statements very
well!

The case statements will be parsed/scanned from the top to bottom.
For speed reasons, you should put the case-statements that occur
most likely at the top and the least likely case-statements at
the bottom.

EXAMPLES

In the following program the result from the equation ’x+5’ is
controlling what text to assign to the ’output’ variable:

int check = x + 5;
string output;
switch(check) {

case 5: /* notice the colon that follows the expression */
output = "x was zero";
break; /* escape from switch! */

case 4:
break; /* do nothing */

case 7:
/* fall through! */

case 8:
output = "x was two or three";
break;

default:
output = "x was not from -1 to 3";

} /* breaks out of ’default’ */

In the following program, the content of the variable ’username’ is
controlling which function to invoke:

string username = getname(); /* get user name */
switch(username) {

case "superuser":
GetSuperUser();
break;

case "normal":
GetNormalUser();
break;

case "unworthy":
GetUnworthyUser();

FPL 54 / 92

break;
}

1.70 while

SYNTAX while (
expression

)
statement

; [
else
statement;]

DESCRIPTION
A while statement enables you to repeatedly run the body of a loop
until the controlling expression is no longer met or evaluates to 0
(zero.)

The expression is evaluated to determine whether or not the body of
the loop should be run. If the expression evaluates to 0 (zero), the
body of the loop never runs. If not, the body is processed. After the
body has run, control passes back to the expression. Further
processing depends on the value of the condition.

When coding in ’C’, I’ve always missed the "while else" function. FPL
includes that feature! If the test expression evaluates to false
(zero) the FIRST TIME it’s evaluated, and an "else" clause exists,
the statement in the "else" clause is run. If the test expression
evaluates to a nonzero value, the statement following the expression
runs and the "else" clause is ignored.

A break or return statement can cause the processing of a while
statement to end, even when the condition does not evaluate to 0
(zero).

NOTE: The else clause is *NOT* a loop. "break" is not a valid move to
break out of such.

EXAMPLES

In the following program, item triples each time the value of the
expression index++ is less than MAX_INDEX. When index++ evaluates to
MAX_INDEX, the while statement ends.

while (index < MAX_INDEX) {
item *= 3;
output("item = ", item, "\n");
index++;

}

The following program first checks if a<0 and if it is, increases a
with 100 until it isn’t any longer less than zero. If not, it’ll
output a message saying so.

while(a<0)

FPL 55 / 92

a+=100;
else

output("a was never below 0\n");

SEE
break

,
return

,
continue

1.71 Functions

These are the internal functions always supplied by FPL:

Function Description
-------- -----------

abs
Absolute value of integer operand.

atoi
Convert a string to an integer.

eval
Calculate the expression stored in a string.

exists
Find out whether an identifier exists.

interpret
Interpret the parameter string as program.

itoa
Convert an integer to string.

itoc
Convert an integer to ASCII.

joinstr
Join strings!

ltostr
Convert an integer to string.

rename
Rename or delete an identifier.

sscanf
Parse a formatted string.

sprintf
Formatted print to a string.

FPL 56 / 92

strcmp
Compare two strings.

stricmp
Compare two strings case insensitive (*).

strlen
String length.

strncmp
Compare two strings a certain length.

strnicmp
Compare two strings a certain length case insensitive (*).

strstr
Find substring str1 in string str2.

stristr
Find substring str1 in string str2 case insensitive (*).

strtol
Convert string to integer.

substr
Get only part of a string.

[Amiga only:]

openlib
Open funclib.

closelib
Close funclib.

(*) = It doesn’t make any difference between ’A’ or ’a’. It does only apply
to ASCII characters; that is only a-z and A-Z.

1.72 abs

SYNTAX int abs(Int);

DESCRIPTION
Returns the absolute value of the input integer.

INPUTS int Int;

RETURNS see description.

1.73 atoi

FPL 57 / 92

SYNTAX int atoi(String);

DESCRIPTION
The atoi keyword returns an integer whose value is represented by the
character string pointed to by the String parameter. atoi scans the
string up to the first character that is inconsistent. Leading
white-space characters are ignored, and an optional sign may precede
the digits.

INPUTS string String;

RETURNS
Upon successful completion, atoi returns the converted value. If no
conversion could be performed, 0 (zero) is returned. If the correct
value is outside the range of representable values, maximum or
minimum value is returned according to the sign of the value.

SEE

strtol()
,
itoa()

1.74 closelib

SYNTAX int closelib(Name);

DESCRIPTION
Closes a specified

funclib
. Funclibs are third

party programs that add functions to the FPL session. The funclibs
should be stored in FPLLIBS:.

A closelib() concludes access to the functions of the specified
funclib. Each call to

openlib()
should have a matching call to

closelib().

For information regarding specified funclibs, refer to the manual of
the particular funclib.

INPUTS
string Name - The name of the funclib.

RETURNS
It return 0 on success. Otherwise see ’openlib’ for closer
description.

SEE
openlib
and the
funclibs

FPL 58 / 92

section.

1.75 debug

SYNTAX int debug (Enable); (V9)

DESCRIPTION
Toggles the "debug mode" state. When FPL runs in the "debug mode",

the debugger is capable of tracing the FPL executions.

If called without parameter, it will return the current "debug mode"
status.

NOTE
The FPL debugger is not extensively used, developed or spread. Much
more documentation regarding this function and FPL debugging concepts
and procedures will appear in future versions of this document.

INPUTS
int Enable - Zero to disable, non-zero to enable.

RETURNS
It returns the "debug mode" state that was when the function was
called. That is, if you enable debug mode, it will return the state
previous to this function call.

SEE

1.76 eval

SYNTAX int eval(String);

DESCRIPTION
The mathematical expression in String is evaluated and returned.
eval handles all variables declared before this point of the
execution.
An error in the expression will unfortunately return 0 which will
look like the result of the expression.

INPUTS string String - A string including a valid numerical expression.

RETURNS
The result of the mathematical expression in String or 0 if there was
any error in the expression.

1.77 exists()

SYNTAX int exists (Name, Specifier);

DESCRIPTION

FPL 59 / 92

Return whether ’Name’ is used as identifier. If ’Specifier’ is
specified (it is optional) it can check whether ’Name’ is an
identifier of the specified kind. Available kinds are listed below
under INPUT label.

INPUTS
string Name - Identifier name that should be checked.
int Specifier - Which type you want to check the named identifier:

’f’ - function
’v’ - variable
’s’ - string variable
’i’ - integer variable

RETURNS
Non-zero if the specified name was found, otherwise zero.

EXAMPLES
Check if the idenfier "foobar" exists:

int foobar_is_there = exists("foobar");

Check if there is a function called "foobar":

int foobar_is_there = exists("foobar", ’f’);

Check if there is a string variable called "foobar":

int foobar_is_there = exists("foobar", ’s’);

SEE

rename()

1.78 interpret

SYNTAX int interpret(String); (V3)

DESCRIPTION
Interprets the argument as if it is a continuation of the program.
The argument must be a 100% correct FPL program statement. All
variables and functions usable in the program at this point will be
usable in the argument-statement too.

Any error in this function will get reported at the position right
after the function call.

INPUTS string String - FPL statement

RETURNS
At this moment: always zero. But do not depend upon that since it
might get changed in the future.

EXAMPLE
This example calls a function via the interpret() function:

FPL 60 / 92

int foobar(int);
interpret("foobar(2);");
exit;

int foobar(int b)
{

output(b);
}

We can create a function that accepts a function name as parameter
and then is able to call that named function:

int foobar(int);
int foo(int);
int bar(int);
int call(string, int);

call("foobar", 1);
call("foo", 2);
call("bar", 3);
exit;

int call(string command, int parameter)
{

int ret; /* declare return code variable */
string statement=joinstr("ret=", command, "(",

ltostr(parameter), ");");

output(statement); /* output the statement */
interpret(statement); /* interpret it */
/*
* At this point ‘ret’ has got the return code

* of the called function.

*/
return(ret);

}

/*
* Here should the definitions of the functions

* "foobar", "foo" and "bar" be programmed.

*/

SEE
eval

1.79 itoa

SYNTAX string itoa(Integer);

DESCRIPTION
The itoa function converts the integer given as argument to a string
and returns it. The convertion will use base 10, which creates a
decimal number.

INPUTS

FPL 61 / 92

int Integer - Number to be converted.

RETURNS
Upon successful completion, the function returns the converted

string. If no conversion could be performed, the returned string is
zero-length.

EXAMPLES
Convert the number the variable ’num’ holds, to a string:

string result= itoa(num);

SEE
ltostr()
,
atoi()

1.80 itoc

SYNTAX string itoc(Integer);

DESCRIPTION
The itoc function returns the character with the ASCII code

given as argument. Any argument number higher than 255 will be ANDed
with 255 internally.

INPUTS
int Integer - ASCII code of the desired character.

RETURNS
Upon successful completion, the function returns the character

as a string.

EXAMPLES
To get the character with ASCII number 137:

string result= itoc(137);

SEE
itoa

1.81 joinstr

SYNTAX string joinstr(String, ...);

DESCRIPTION
This function lets you specify any amount of strings, and returns

them all as one concatenated single string.

INPUT string String - Strings to be merged.

RETURNS

FPL 62 / 92

A string holding all joined strings.

EXAMPLES
Merge three strings into one:

string a="one ", c="two ", b="three", d;
d=joinstr(a, b, c); /* ’d’ now holds "one two three" */

1.82 ltostr

SYNTAX string ltostr(Integer, Base);

DESCRIPTION
The ltostr subroutine returns a string which is the first parameter

converted using the second parameter as base.

If the Base parameter is positive and not greater than 36, then it
is used as the base for conversion.

INPUTS
int Integer - Number to be converted.
int Base - Specifies the base to use for the conversion.

RETURNS
Upon successful completion, the ltostr subroutine returns the

converted string. If no conversion could be performed, the returned
string is zero-length.

EXAMPLES
Convert the number 1993 to hexadecimal:

string result= ltostr(1993, 16);

SEE
strtol()
,
itoa()

1.83 openlib

SYNTAX int openlib(Name, Version);

DESCRIPTION
Opens a specified

funclib
. Funclibs are third

party programs that add functions to the FPL session. The funclibs
should be stored in FPLLIBS:.

An openlib() gains access to the functions of the specified funclib.
After finished using the functions of that funclib, the session

should

FPL 63 / 92

be concluded with a call to
closelib()

. Each
call to openlib() should have a matching call to closelib().

For information regarding specified funclibs, refer to the manual of
the particular funclib.

INPUTS
string Name - The name of the funclib.
int Version - The lowest acceptable version of the funclib.

RETURNS
It return 0 on success. Otherwise a non-zero number where the numbers
have the following meaning:
1 - funclib parameter error
2 - internal funclib error
3 - failed getting a system resource
4 - out of memory error
5 - failed loading the funclib (occurs if you open a non-existant

funclib).
6 - the requested version didn’t exist
More error codes are likely to be added within short.

SEE
closelib
and the
funclibs
section.

1.84 rename

SYNTAX int rename (From, To);

DESCRIPTION
This function lets the programmer rename an already existing
identifier to a new name! By renaming an already existing function
or variable, it won’t no longer be accessible through its old name
and other programs and functions may not work after such an
operation!

Renaming to a zero length string (""), will remove the identifier
completely.

This function was designed in order to fully enable FPL programmers
to make patches and/or updates to internal or external functions!

It does not allow renaming of keywords.

INPUTS
string From - The name of the identifier to rename.

string To - The new name of the identifier. May not be used
already!

FPL 64 / 92

RETURNS
Returns zero if everything went fine, otherwise a non-zero [error-]
number.

WARNING
DO NOT USE THIS unless you have a really good reason. And when you
think you have, try once more to find another solution! Never remove
identifiers that are used by other functions/programs. If you decide
to rename such a one, make sure you rename a new function to the old
name that does the same work.

NOTE
There will be no syntax-control of the ’To’ identifier string. You
must make sure the new name follows the FPL rules or you won’t be
able to access it!

EXAMPLES
The program that you control with FPL features a function called
’Sum()’ that is supposed to return the sum of the two parmeters
you send it. This function seems to return wrong number. This
following source fixes it:

export int NewSum(int a, int b)
{

return a+b;
}
rename("Sum", ""); /* delete old, non-working version */
rename("NewSum", "Sum"); /* introduce the new one! */

SEE

exists()

1.85 sscanf

NAME
sscanf - convert a formatted string

SYNOPSIS
int sscanf(string, format, ...);

DESCRIPTION
sscanf reads characters, interprets them according to a format,
and stores the results in its arguments. It expects, as arguments, a
control string, format, described below and a set of pointer arguments
indicating where the converted input should be stored. If there are
insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments
are simply ignored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contain:

1. White-space characters (blanks, tabs, new-lines, or
form-feeds) that, except in two cases described below, cause

FPL 65 / 92

input to be read up to the next non-white-space character.

2. An ordinary character (not %) that must match the next
character of the input stream.

3. Conversion specifications consisting of the character %,
an optional assignment suppression character *, a decimal
digit string that specifies an optional numerical maximum
field width, an optional letter l (ell), L, or h indicating
the size of the receiving object (not really needed in FPL,
but still supported for compatibility), and a conversion
code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument unless assignment suppression was indicated by
the character *. The suppression of assignment provides a way of
describing an input field that is to be skipped. An input field is
defined as a string of non-space characters; it extends to the next
inappropriate character or until the maximum field width, if one is
specified, is exhausted. For all descriptors except the character [and
the character c, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. For a suppressed field, no argument is given. The following
conversion codes are valid:

% A single % is expected in the input at this point; no assignment is
done.

d Matches an optionally signed decimal integer, whose format is the
same as expected for the subject sequence of the strtol function
with the value 10 for the base argument. The corresponding
argument should be a referemce to an integer.

u Matches an optionally signed decimal integer, whose format is the
same as expected for the subject sequence of the strtol function
with the value 10 for the base argument. The corresponding
argument should be a reference to an integer.

o Matches an optionally signed octal integer, whose format is the
same as expected for the subject sequence of the strtoul function
with the value 8 for the base argument. The corresponding argument
should be a reference to an integer.

x Matches an optionally signed hexadecimal integer, whose format is
the same as expected for the subject sequence of the strtoul
function with the value 16 for the base argument. The
corresponding argument should be a pointer to unsigned integer.

i Matches an optionally signed integer, whose format is the same as
expected for the subject sequence of the strtol function with the
value 0 for the base argument. The corresponding argument should
be a reference to an integer

n No input is consumed. The corresponding argument should be a

FPL 66 / 92

reference to an integer into which is to be written the number of
characters read from the input stream so far by the call to the
function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the
function.

s A character string is expected; the corresponding argument should
be a reference to a string. The input field is terminated by a
white-space character.

c Matches a sequence of characters of the number specified by the
field width (1 if no field width is present in the directive). The
corresponding argument should be a reference to a string. The
normal skip over white space is suppressed.

[Matches a nonempty sequence of characters from a set of expected
characters (the scanset). The corresponding argument should be a
reference to a string. The conversion specifier includes all
subsequent characters in the format string, up to and including
the matching right bracket (]). The characters between the
brackets (the scanlist) comprise the scanset, unless the
character after the left bracket is a circumflex (^), in which
case the scanset contains all characters that do not appear in the
scanlist between the circumflex and the right bracket. If the
conversion specifier begins with [] or [^], the right bracket
character is in the scanlist and the next right bracket character
is the matching right bracket that ends the specification;
otherwise the first right bracket character is the one that ends
the specification.

A range of characters in the scanset may be represented by the
construct first - last; thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal
to last, or else the dash will stand for itself. The character -
will also stand for itself whenever it is the first or the last
character in the scanlist. To include the right bracket as an
element of the scanset, it must appear as the first character
(possibly preceded by a circumflex) of the scanlist and in this
case it will not be syntactically interpreted as the closing
bracket. At least one character must match for this conversion to
be considered successful.

p Matches an implementation-defined set of sequences, which should be
the same as the set of sequences that may be produced by the %p
conversion of the printf function. The corresponding argument
should be a reference to an integer. The interpretation of the
input item is implementation-defined. If the input item is a value
converted earlier during the same program execution, the pointer
that results shall compare equal to that value; otherwise, the
behavior of the %p conversion is undefined.

If an invalid conversion character follows the %, the results of the
operation may not be predictable.

The conversion terminates at the end of the control string or when an
input character conflicts with the control string.

FPL 67 / 92

If end-of-file is encountered during input, conversion is terminated.

The success of literal matches and suppressed assignments is
not directly determinable other than via the %n directive.

EXAMPLES

SEE ALSO

sprintf()
,
strtol
()

RETURN
This routines returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early matching
failure between an input character and the control string. If the
input ends before the first matching failure or conversion, -1 is
returned.

1.86 sprintf

SYNTAX string sprintf (format, arg1, arg2, ...);

DESCRIPTION

This function produces a string of ASCII characters.

The format argument holds a string that contains ordinary
characters and conversion specifications that indicate how you
want the arguments arg1, arg2, and so on to be printed. The
ordinary characters are copied to the result string, but the
conversion specifications are replaced with the correctly formatted
values of the arguments arg1, arg2, and so on. The first conversion
specification is replaced with the formatted value of arg1, the
second specification is replaced with the value of arg2, and so
on. In some cases, as described below, a conversion specification
may process more than one argument.

Each conversion specification must begin with a percent character
(%). To place an ordinary percent into the output stream, precede
it with another percent in the fmt string. That is, %% will send
a single percent character to the output stream. A specification
has the following format:

%[arg][flags][width][.precision][size]type

The brackets ([]) indicate optional fields. Each field is defined
as follows:

arg
FPL supports the argument number selection style $<arg>.
When an argument number has been given, that specified

FPL 68 / 92

argument will be used instead of the next one in turn.
I.e "%$2d" will produce a formatted integer found as the
second argument. You should *not* mix specified arugment
numbers with %-codes with unspecified arugment numbers.

flags
controls output justification and the printing of signs,
blanks, decimal places, and hexadecimal prefixes.

If any flag characters are used, they must appear after
the percent. Valid flags are as follows:

- (minus)
causes the result to be left-justified within the
field specified by width or within the default width.

+ (plus)
causes a plus or minus sign to be placed before the
result. This flag is used in conjunction with the
various numeric conversion types. If it is absent,
the sign character is generated only for a negative
number.

blank
causes a leading blank for a positive number and a
minus sign for a negative number. This flag is
similar to the plus. If both the plus and the blank
flags are present, the plus takes precedence.

(pound)
causes special formatting. With the o, x, and X
types, the pound flag prefixes any nonzero output with
0, 0x, or 0X, respectively. With the f, e, and E
conversion types, the pound flag forces the result to
contain a decimal point. With the g and G types, the
pound flag forces the result to contain a decimal
point and retain trailing zeroes.

0 (zero)
pads the field width with leading zeros instead of
spaces for the d, i, o, u, x, X, e, E, f, g, and G
conversion types. If the minus flag is also used, the
zero flag is ignored. If a precision is specified,
the zero flag is ignored for conversion types d, i, o,
u, x, and X. Behavior of the zero flag is undefined
for the remaining conversion types.

width
specifies the field width, which is the minimum number of
characters to be generated for this format item.

The width is a nonnegative number that specifies the
minimum field width. If fewer characters are generated by
the conversion operation, the result is padded on the left
or right (depending on the minus flag described above). A
blank is used as the padding character unless width begins
with a zero. In that case, zero padding is performed. If

FPL 69 / 92

the minus flag appears, padding is performed with blanks.
width specifies the minimum field width, and it will not
cause lengthy output to be truncated. Use the precision
specifier for that purpose.

If you do not want to specify the field width as a
constant in the format string, you can code it as an
asterisk (*), with or without a leading zero. The
asterisk indicates that the width value is an integer in
the argument list. See the examples for more information
on this technique. If the asterisk is followed by a $ sign
and a digit 1-9, you can specify which argument that holds
the width.

precision
specifies the field precision, which is the required
precision of numeric conversions or the maximum number of
characters to be copied from a string, depending on the
type field.

The meaning of the precision item depends on the field
type, as follows:

Type Meaning
---- -------
c The precision item is ignored.
b, d, i, o, u, x, X The precision is the minimum number

of digits to appear. If fewer
digits are generated, leading
zeroes are supplied.

s The precision is the maximum number
of characters to be copied from the
string.

As with the width item, you can use an asterisk for the
precision to indicate that the value should be picked up
from the next argument.

size
Not used by FPL, though all the ANSI C modifiers are still
read and ignored for compatibility.
(Can be either L for long double, l for large size, or h
for small size.)

type
specifies the type of argument conversion to be done.
Valid conversion types are as follows:

b
specifies binary-integer conversion. The
associated argument is taken as an unsigned
integer, and it is converted to a string of binary
digits. This conversion type is an extension to
the ANSI standard.

c
specifies single-character conversion. The
associated argument must be an integer. The

FPL 70 / 92

single character in the right-most byte of the
integer is copied to the output.

d
specifies decimal-integer conversion. The
associated argument must be an integer, and the
result is a string of digits preceded by a sign.
If the plus and blank flags are absent, the sign
is produced only for a negative integer.

i
specifies decimal-integer conversion. The
associated argument must be an integer, and the
result is a string of digits preceded by a sign.
If the plus and blank flags are absent, the sign
is produced only for a negative integer.

n
specifies the argument will be a pointer to an
integer into which is written the number of
characters written so far by this call to the
sprintf function.

o
specifies octal-integer conversion. The
associated argument is taken as an unsigned
integer, and it is converted to a string of octal
digits.

p
specifies pointer conversion. The associated
argument is taken as a data pointer, and it is
converted to hexadecimal representation. Under
AmigaDOS, the pointer is printed as 8 hexadecimal
digits, with leading zeroes if necessary.

P
specifies pointer conversion. This is the same as
the p format, except that uppercase letters are
used as hexadecimal digits. This conversion type
is an extension to the ANSI standard.

s
specifies string conversion. The associated argument
must be a string!

u
specifies unsigned decimal integer conversion.
The associated argument is taken as an unsigned
integer, and it is converted to a string of
decimal digits.

x
specifies hexadecimal-integer conversion. The
associated argument is taken as an unsigned
integer, and it is converted to a string of
hexadecimal digits with lowercase letters.

X
specifies hexadecimal-integer conversion. This is
the same as the x format, except that uppercase
letters are used as hexadecimal digits.

RETURNS

This function returns the formatted string.

FPL 71 / 92

EXAMPLE

/* This example prints a message indicating whether */
/* the function argument is positive or negative. */
/* In the second sprintf, the width and precision */
/* are 15 and 8, respectively. */
string pneg(int value)
{

string sign;

if (value < 0) {
sign = "negative";

}
else {

sign = "not negative";
}
return sprintf("The number %d is %s.n",value,sign);

}

Output(pneg(37));
Output(pneg(-18));

/* This example outputs 12 and 8 in reversed order by using the
specified argument number syntax: */

Output(sprintf(" %$2d %$1d ", 12, 8));

1.87 strcmp

SYNTAX int strcmp (String1, String2);

int stricmp (String1, String2);

DESCRIPTION
strcmp lexicographically compares the string in the String1
parameter to the string in the String2 parameter. stricmp() does
the same but does a case insensitive compare, which makes uppercase
letters equal their lowercase correspondance.

Case insensitive means that the strings "HELLO" and "hello" are
treated as identical.

INPUTS string String1, String2;

RETURNS
strcmp and stricmp return values that are:

Less than 0 (zero) if String1 is less than String2
Equal to 0 (zero) if String1 is equal to String2
Greater than 0 (zero) if String1 is greater than String2.

SEE
strncmp and strnicmp

FPL 72 / 92

1.88 strlen

SYNTAX int strlen(String);

DESCRIPTION
Returns the length of the string String.

INPUTS string String;

RETURNS
The length of the string String.

1.89 strncmp

SYNTAX int strncmp (String1, String2, Num);

int strnicmp (String1, String2, Num);

DESCRIPTION
The strncmp and strnicmp subroutines make the same comparisons as
strcmp and stricmp, but they compare at most ’Num’ characters.

INPUTS string String1, String2;
int Number - Maximum number of characters to compare.

RETURNS
they return values that are:

Less than 0 (zero) if String1 is less than String2
Equal to 0 (zero) if String1 is equal to String2
Greater than 0 (zero) if String1 is greater than String2.

EXAMPLES
Compare the string variable Str1 and check if it matches Str2, but
check no more than 12 characters:

if(!strncmp(Str1, Str2, 12))
output("MATCH!");

This example returns zero (0) in result.

result = strncmp("realization", "really", 4);

This example returns a value less than zero in result.

result = strncmp("world", "worldgames", 100);

SEE
strcmp() and stricmp()

FPL 73 / 92

1.90 strstr

SYNTAX int strstr(String1, String2, Column);

int stristr (String1, String2, Column);

DESCRIPTION
The strstr and stristr functions find occurrences of String2 in
String1.

The ’Column’ parameter can be set optionally. It specifies the start
searching column!

strstr() requires the substring to match exactly, while the stristr()
performs a case insentive search. Case insensitive means that the
strings "HELLO" and "hello" are treated as identical.

INPUTS
string String1 - The string to search within.

string String2 - The substring.

int Column - Start search column.

RETURNS
They return in which column they found String2 or -1 if the string
was not found. If String2 is a 0 (zero) length string, the functions
return 0.

SEE
strncmp and strnicmp
,
strcmp and stricmp

1.91 strtol

SYNTAX int strtol(String, Base);

DESCRIPTION
The strtol subroutine returns an integer whose value is represented

by the character string pointed to by the String parameter. The
strtol subroutine scans the string up to the first character that is
inconsistent with the Base parameter. Leading white-space characters
are ignored, and an optional sign may precede the digits.

If the Base parameter is positive and not greater than 36, then it
is used as the base for conversion. After an optional leading sign,
leading zeros are ignored. "0x" or "0X" is ignored if Base is 16
(sixteen).

If the Base parameter is 0 (zero), the string determines the base.
Thus, after an optional leading sign, a leading 0 (zero) indicates
octal conversion, a leading "0x" or "0X" indicates hexadecimal
conversion and a leading "0b" or "0B" indicates a binary conversion.

FPL 74 / 92

The default is to use decimal conversion.

INPUTS string String - Character string to be converted.
int Base - Specifies the base to use for the conversion.

RETURNS
Upon successful completion, the strtol subroutine return the

converted value. If no conversion could be performed, 0 (zero) is
returned. If the correct value is outside the range of representable
values, maximum or minimum value is returned according to the sign of
the value.

EXAMPLES
Convert the string holding the hexadecimal "0xdeadbeef" to decimal:

string String = "0xdeadbeef"
int num = strtol(String, 16);

SEE
ltostr

1.92 substr

SYNTAX string substr(Source, Column, Length);

DESCRIPTION
The substr function returns a substring to a destination string
variable. Giving a length of -1 will make substr get the rest
of the string from the column specified.

- If the substring is told to keep on beyond the end of the Source,
the substring will end where the Source string does.

- If the column parameter is below zero or larger than the length of
the source string, a zero length string is returned.

- The first column of the source is column 0 (zero).

INPUTS
string Source - The source string from which the substring

will be copied from. */
int Column - Start column of the substring.
int Length - The Length of the substring.

RETURNS
The substring!

EXAMPLES
Extract a substring of 3 characters from column 4 of the source
string:

string Dest;
Dest=substr("One Two Three", 4, 3);

Get the right part of a line split by the character "|":

FPL 75 / 92

string Line="Names |Addresses", Dest;
int pos;
pos=strstr(Line, "|");
if(pos<0) /* if we can’t find a "|" */

exit;

pos++; /* We don’t want to include the "|"
Character in our substring! */

Dest=substr(Line, /* The source string */
pos, /* where from */
-1); /* To the end of the string. */

It’s OK to try getting more than you will get. This example get the
rest of the line too, but maximum 10000 characters...:

Dest=substr(Line, pos, 10000);

SEE
strstr()
and

stristr()

1.93 Examples

1. Ask the user for his age and output the number of days old he is:

int a; /* Create an integer called "a" */
a=num_input("Age in years:"); /* Get age of user in variable a */
output("Makes " a*365 " days!\n");/* Output proper text */

2. Ask the user for his name and output it a hundred times with spaces
between:

string name; /* Create a string variable */
name=str_input("What’s your name?"); /* Input name */
int i; /* Create an integer */
for (i=0; i<100; i++) /* Count 100 times */
output(name " "); /* Output the name */

3. Replace all form feed characters with the proper number of newlines
to suit the page length given by the user (for guys using
printers which by some reason don’t handle form feeds):

int len, i, page; // Create a number of ints
len=num_input("Page length?"); // Get page length
while(search_for("\f", "S")) { // Search for form feed

page=len-line()%len; // Calc number of newlines
for(i=0, i<page, i++) // Count to number above

output("\n"); // Output a newline
} // End of while
status("Done!"); // Text in status line.

FPL 76 / 92

4. Make a nice little table with temperatures in Celsius and
Fahrenheit. Count from 0 to 100 Celsius with ten degrees steps:

int c, f; /* Declare two variables */
while(c<=100) { /* while c less than or equal to 100 */

output(c" degrees Celsius = ");/* output Celsius */
f=c*18/10+32; /* The formula. Made to work

without floating points */
output(f" degrees Fahrenheit! \n"); /* output Fahrenheit result */
c+=10; /* Add ten to c. */

} /* loop */

5. Create a routine that make a division with an innumerable number of
decimals:

int a, b, n; /* Declare all variables needed */
a=355; /* Set the operands of the division */
b=14;
output(a " / " b " = "); /* View the evaluation to the user */
output(a/b); /* Calculate... */
if(a%b) { /* If there remains anything... */
output("."); /* Display a dot. */
for(n=0;n<100;n++) { /* Only 100 decimals this time! */

a=a%b*10; /* Evaluate next left operator */
output(a/b); /* View the next figure */

}
}
output("\n"); /* Make an extra newline */

6. Perform the same task as above. This is an example program showing
some simple moves to make the code run faster:

int a=355, b=14, n;
string s=a" / "b" = "(a/b);
if(a%b)

for(s+=".";n++<100;)
s+=((a=a%b*10)/b);

output(s"\n");

7. Try out the recursive possibilities of FPL:

int b;
int label(int &);
label(b);
output(b"\n");
exit;

int label(int &b)
{

if(++b<5) {
while(1) {{{{{{label(b);break;}}}}}}

}
return;

}

FPL 77 / 92

1.94 Error messages

DIVISION BY ZERO
Division by zero is not a permitted mathematical move (note that this may
also appear with the remainder operator "%").
See

division
or
remainder

.

FILE
Something about the specified file is wrong. Check the file name again.

IDENTIFIER NOT FOUND
The variable or function is not found!

IDENTIFIER ALREADY USED
This name is already used by an identifier. You cannot use it too!

ILLEGAL ARRAY
You cannot create an array with less than one element, access elements with
higher number than you declared it to or access negative elements. When
using the resize keyword the variable name must already be an array.
See

variables
or
resize

.

ILLEGAL ASSIGN
FPL does not support that type of

compound assignment
.

ILLEGAL BREAK

Break
can ONLY be used within some kind of loop (
while

,
for
or
do

)
or

switch
, and this wasn’t such a
statement

.

ILLEGAL CASE
The ’case’ keyword can only be used within a

switch()
statement!

FPL 78 / 92

ILLEGAL CONDITION OPERATOR

Conditional operators
should be used like a ? b : c. If any of the ? or :

characters are missing, this might become the error message!

ILLEGAL CONTINUE

Continue
can ONLY be used within some kind of loop (
while

,
for
or

do
), and this wasn’t such a
statement

.

ILLEGAL DECLARATION
The

declaration
was not placed in the beginning of a block,

or a function isn’t declared the way it was prototyped.

ILLEGAL DEFAULT
The ’default’ keyword can only be used within a

switch()
statement!

ILLEGAL PROTOTYPE
Something in the just parsed function prototype was not using
correct syntax and/or keywords.

ILLEGAL REFERENCE
A variable reference was used the wrong way!

ILLEGAL RESIZE

Resizing
of an array did not follow correct syntax!

ILLEGAL STATEMENT
The

statement
was not allowed at this point. It might

be a numerical expresion where a string expresion was expected or vice
versa. It might also be a statement that cannot be placed here.

ILLEGAL STRING INDEX
Trying to read a negative column off a string will most likely cause this.

ILLEGAL VARIABLE TYPE
You mixed

string
and integer variables/

FPL 79 / 92

expressions
illegally

or you tried to send to wrong kind of variable to a function.

INTERNAL ERROR
The library’s internal data/structures has not been handled properly by
the coder of the software you’re using. Report this immediately to
him/her. (See the docs of the software you’re controlling with FPL.) This
is not the FPL programmer’s fault.

INSIDE FUNCTION NOT FOUND
A function that has been prototyped to be an ‘inside’ function was not
found!
Notice that the function *MUST* be prototyped and declared the same way. A
function prototyped as ‘int’ but declared as ‘void’, will *NOT* be found by
the FPL interpreter!

INCOMPLETE STATEMENT
The

statement
just parsed did not include a required action such as a

variable change or a function call.

MISSING APOSTROPHE
The program most likely contains a character within single quotes (’),
where the following quote is missing.

MISSING ARGUMENT
The

function
/
keyword
you tried to invoke, requires more arguments!

(Or refer to the docs of the software you’re controlling with FPL.)

MISSING BRACE
Some places just require braces. I.e block statements that have an initial
brace or

Array assigns
that must end with a close

brace.

MISSING BRACKET
Array references and other need an open bracket ([) and a close bracket
(]).

MISSING COLON
There should be a colon (:) here, but it’s not!

MISSING OPERAND
Making an expression that starts with an operator most likely causes this
error.

MISSING PARENTHESES
The

statement
just interpreted had a lack of parenthesis.

FPL 80 / 92

MISSING SEMICOLON
All

statements
must be separated with semicolons. This wasn’t!

MISSING WHILE
There is a missing ’while’ keyword after the

do-while
statement!

OUT OF MEMORY
The system has run out of memory. This isn’t your fault, and there is
nothing you can do about it but decrease memory usage. Note that if *any*
internal FPL allocation call fails, the program stops with this error code.

OUT OF STACK
The stack size hit the roof. The program is too recursive!

PARAMETER IS OUT OF RANGE
The parameter(s) specified must be within a certain range, which you
clearly did not manage. (Refer to the docs of the action you just tried.)

PROGRAM STOPPED
The program was stopped by a force outside the library. This is not
a real error message but more like information.

READ ONLY VIOLATION
You tried changing the contents of a

read-only variable
.

SYNTAX ERROR
Severe error in your writing. Rethink and try again. All

functions
,

labels or variable
identifiers MUST start with a letter

.

TOO MANY PARAMETERS
Either a function is called with too many parameters, or there is a missing
paranthesis after the parameters.

UNBALANCED COMMENT
There is no corresponding end of comment.

UNEXPECTED END OF PROGRAM
The program ended where it wasn’t supposed to! Probable cause is a
lack of closing comment sign or lack of a closing paren of some kind.

UNEXPECTED INTEGER STATEMENT
The interpreter expected a

string expression
, but read an integer one.

UNEXPECTED STRING STATEMENT

FPL 81 / 92

The interpreter expected an
integer expression
, but read a string one.

UNKNOWN
The programmer of the host software sent a strange error code to FPL which
there is no corresponding error message to!

UNMATCHED BRACE
This brace has no corresponding one.

1.95 Index

Index of database FPL

Documents

About this manual

abs

Addition +

Assignment expressions

atoi

Binary expressions

Bitwise AND &

Bitwise Exclusive OR ^

Bitwise inclusive OR |

Bitwise left and right shift << >>

Bitwise negation ~

Blockstatement

break

case

char

closelib

Comma expressions

Compound assignment

Conditional expressions

FPL 82 / 92

Constants

continue

debug~~~~

Declare inside functions

Decrement --

default

Division /

do

else

Equality == !=

Error messages

eval

Examples

exists()

exit

export

Expression statement

for

FPL Users Documentation

Funclibs

Function calls

Functions

Functions

General

General function use

Grouping and evaluating

Hints and tricks

How to reach me

FPL 83 / 92

if

Increment ++

int

interpret

itoa

itoc

joinstr

Keywords

Keywords

Line Control

Logical AND &&

Logical negation !

Logical OR ||

ltostr

Multiplication *

Null statement

Numeric expressions (and operators)

openlib

Parenthesized Expressions

Pragmas in FPL

Primary expressions

Relational < > <= >=

Remainder %

rename

resize

return

short

Simple assignment =

sprintf

FPL 84 / 92

sscanf

Statements

strcmp

string

Strings

strlen

strncmp

strstr

strtol

substr

Subtraction -

switch

typedef

Unary Expression

Unary minus -

Unary plus +

Variables

while
Buttons

~++~operator~

~~i

~About~this~manual~

~Addition~+~~~~~~~~~~~~~

~Additive~~~~~~~~~~~~~

~Assignment~~~~~~~~~~~

~Assignment~expressions~~

~auto~~~~~

~Binary~Expressions~~~~~~

FPL 85 / 92

~Bitwise~AND~&~~~~~~~~~~

~Bitwise~Exclusive~OR~

~Bitwise~Exclusive~OR~^~

~Bitwise~Inclusive~OR~

~Bitwise~Inclusive~OR~|~

~Bitwise~Logical~AND~~

~Bitwise~Negation~~~

~Bitwise~Shift~~~~~~~~

~Bitwise~Shift~<<~>>~~~~

~Block~~~~~~

~break~

~break~~~~

~break~~~~~~

~case~

~case~~~~~

~char~

~char~~~

~char~~~~~

~closelib()~

~closelib~

~Comma~~~~~~~~~~~~~~~~

~Comma~expressions~~~~~~~

~comma~operator~

~compound~

~compound~assignment~

~Conditional~~~~~~~~~~

~Conditional~Expressions~

~const~~~~

~Constants~~~~~~~~~~~~~~~

FPL 86 / 92

~continue~

~continue~~~

~debug~~~~

~declaration~

~Decrement~--~~~~~~~

~default~

~default~~

~division~

~Division~/~~~~~~~~~~~~~

~do~

~do~~~~~~~

~do~~~~~~~~~

~else~

~Equality~~~~~~~~~~~~~

~Equality~==~!=~~~~~~~~~

~Error~messages~~~~

~eval~

~Examples~~~~~~~~~~

~exit~

~exit~~~~~

~export~

~expression1~

~expression2~

~expression3~

~Expression~

~expression~

~expressions

~Expressions~~~~~~~

FPL 87 / 92

~for~

~for~~~~~~

~for~~~~~~~~
~FPL~implementation~~

~funclib~

~funclibs~

~Funclibs~~~~~~~~~~

~function~

~Function~calls~

~functions~

~Functions~~~~~~~~~

~General~~~~~~~~~~~

~general~function~usage~
~General~information~

~Grouping~and~evaluating~

~Grouping~and~Evaluating~FPL~Expressions~

~Hints~and~tricks~~

~How~to~reach~us~~~

~identifiers~MUST~start~with~a~letter~

~if~

~if~~~~~~~

~if~~~~~~~~~

~Increment~++~~~~~~~

~Inside~functions~

~int~

~int~~~~

~int~~~~~~
~integer~

~integer~variable~

~Internal~functions~

FPL 88 / 92

~itoa~

~keyword~

~keyword~reference~

~keywords~

~Keywords~~~~~~~~~~

~Line~control~~~~~~

~Logical~AND~&&~~~~~~~~~

~Logical~AND~~~~~~~~~~

~Logical~Negation~!~

~Logical~OR~~~~~~~~~~~

~Logical~OR~||~~~~~~~~~~

~long~

~long~~~~~

~ltostr~

~More~variable~declaration~details~

~Multiplication~*~~~~~~~

~Multiplicative~~~~~~~

~Null~~~~~~~

~numerical~expressions~

~openlib()~

~openlib~

~outputs~all~ASCII~c

~Parenthesized~Expressions~

~Pragmas~~~~~~~~~~~

~precedence~

~primary~

~Primary~~~~~~~~~~~~~~

~Primary~Expressions~~~~~

~register~

FPL 89 / 92

~Relational~~~~~~~~~~~

~Relational~<~>~<=~>=~~~

~remainder~

~Remainder~%~~~~~~~~~~~~

~remainder~operator~

~resize~

~resize~~~

~return~

~return~~~

~return~~~~~

~short~

~short~~

~short~~~~

~simple~assignment~

~statement~

~Statements~

~statements~

~Statements~~~~~~~~

~static~~~

~string~

~string~

~string~~~

~string~handlings~

~string~variable~

~Strings~~~~~~~~~~~

~Subtraction~-~~~~~~~~~~

~switch~

~switch~~~

FPL 90 / 92

~switch~~~~~

~typedef~~

~Unary~~~~~~~~~~~~~~~~

~Unary~Expressions~~~~~~~

~Unary~Minus~-~~~~~~

~Unary~Plus~+~~~~~~~

~variable~assigns~

~variables~

~Variables~~~~~~~~~

~volatile~

~while~

~while~~~~

~while~~~~~~

abs~~~~~~

Array~assigns

atoi()

atoi~~~~~

char

closelib~

Conditional~operators

continue

do

do-while

er)~and

eval()

eval~~~~~

examp

exists()

exists~~~

FPL 91 / 92

function~reference

int~

integer~expression

interpret

itoa()

itoa~~~~~

itoc~~~~~

joinstr~~

ltostr()

ltostr~~~

openlib~~

read-only~variable

rename()

rename~~~

Resizing

sprintf()

sprintf~~

sscanf~~~

statement

statements

strcmp()

strcmp()~and~stricmp()

strcmp~~~

strcmp~and~stricmp

stricmp~~

string

string~expression

stristr()

FPL 92 / 92

stristr~~

strlen~~~

strncmp()

strncmp~~

strncmp~and~strnicmp

strnicmp~

strstr()

strstr~~~

strtol

strtol()

strtol~~~

substr()

substr~~~

switch()

variables.

while

	FPL
	FPL Users Documentation
	About this manual
	How to reach me
	General
	Funclibs
	Line Control
	Pragmas in FPL
	Variables
	Strings
	Functions
	Declare inside functions
	General function use
	Constants
	Blockstatement
	Statements
	Null statement
	Expression statement
	Keywords
	Hints and tricks
	Numeric expressions (and operators)
	Grouping and evaluating
	Primary expressions
	Parenthesized Expressions
	Function calls
	Unary Expression
	Increment ++
	Decrement --
	Unary plus +
	Unary minus -
	Logical negation !
	Bitwise negation ~
	Binary expressions
	Multiplication *
	Division /
	Remainder %
	Addition +
	Subtraction -
	Bitwise left and right shift << >>
	Relational < > <= >=
	Equality == !=
	Bitwise AND &
	Bitwise Exclusive OR ^
	Bitwise inclusive OR |
	Logical AND &&
	Logical OR ||
	Conditional expressions
	Assignment expressions
	Simple assignment =
	Compound assignment
	Comma expressions
	Keywords
	break
	case
	char
	continue
	default
	do
	else
	exit
	export
	for
	if
	int
	resize
	return
	short
	string
	typedef
	switch
	while
	Functions
	abs
	atoi
	closelib
	debug
	eval
	exists()
	interpret
	itoa
	itoc
	joinstr
	ltostr
	openlib
	rename
	sscanf
	sprintf
	strcmp
	strlen
	strncmp
	strstr
	strtol
	substr
	Examples
	Error messages
	Index

